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Abstract
The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural
selective agonist of the peripherally expressed cannabinoid receptor 2 (CB2). It is found in
relatively high concentrations in many spices and food plants. A number of studies have shown
that CB2 is critically involved in the modulation of inflammatory and neuropathic pain
responses. In this study, we have investigated the analgesic effects of BCP in animal models
of inflammatory and neuropathic pain. We demonstrate that orally administered BCP reduced
inflammatory (late phase) pain responses in the formalin test in a CB2 receptor-dependent
manner, while it had no effect on acute (early phase) responses. In a neuropathic pain model
the chronic oral administration of BCP attenuated thermal hyperalgesia and mechanical
allodynia, and reduced spinal neuroinflammation. Importantly, we found no signs of tolerance
to the anti-hyperalgesic effects of BCP after prolonged treatment. Oral BCP was more effective
than the subcutaneously injected synthetic CB2 agonist JWH-133. Thus, the natural plant
product BCP may be highly effective in the treatment of long lasting, debilitating pain states.
Our results have important implications for the role of dietary factors in the development and
modulation of chronic pain conditions.
& 2013 Elsevier B.V. and ECNP. All rights reserved.
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1. Introduction

Pain is an important sensory signal indicating the occurrence or
danger of tissue damage. The associated negative emotional
reserved.
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effect of pain stimulates avoidance behaviors and thus helps to
protect the organism from future dangerous situations
(Basbaum et al., 2009; Woolf and Ma, 2007). Tissue inflamma-
tion can enhance pain sensation through the sensitization of
nociceptors, peripheral neurons responding to painful stimuli,
and through a sensitization of spinal neurons leading to an
enhanced transmission of nociceptive signals. The resulting
allodynia and hyperalgesia of the inflamed tissue also contri-
butes to the recuperative process (Hauser et al., 2013). Pain
sensation typically reverts to normal levels as the inflammatory
response abates. Neuropathic pain conditions on the other hand
do not serve any useful purpose. They arise from lesion or injury
of peripheral nerves, sensory ganglia, spinal roots or central
structures, by trauma, vascular or metabolic disorders, viral
infection, neuroinflammation or autoimmune responses. These
lesions trigger inflammatory responses at the site of the nerve
injury and in the spinal projection area, characterized by an
activation of microglia and astrocytes, and an increased
production of pro-inflammatory cytokines. These responses lead
to long lasting molecular and cellular changes in the spinal cord
that account for many aspects of the chronic pain, as well as
hyperalgesia and allodynia reported by patients suffering from
neuropathic pain (Costigan et al., 2009). Neuropathic pain is
often persistent and difficult to treat with current medications.

Cannabis preparations, which have been used since thou-
sands of years for the treatment of pain (Zias et al., 1993)
have recently come again into the focus as potential
therapeutics for inflammatory and neuropathic pain condi-
tions. Currently, cannabis extracts and synthetic preparations
of the psychoactive cannabis compound Δ9-tetrahydrocanna-
binol (THC) have been approved in many countries for clinical
pain management at doses and formulations that show on
only minor central side effects (Ben Amar, 2006; Iskedjian
et al., 2007; Lynch and Campbell, 2011). Nevertheless,
psychoactive effects of THC-containing medications are an
important consideration for many clinicians and their
patients. These effects are caused by the activation of the
brain cannabinoid receptor 1 (CB1), which also mediates
many of the acute analgesic effects of THC (Hohmann and
Herkenham, 1999). Recent interest has therefore focused on
the cannabinoid receptor 2 (CB2), which is primarily
expressed in non-neuronal immune cells (Facci et al., 1995;
Maresz et al., 2005). CB2 expression is induced in many
tissues and cells, including the CNS (Benito et al., 2007),
under inflammatory conditions and has therefore been
implicated as a potential therapeutic target for inflammatory
disorders including chronic pain. CB2-selective agonists
should have an excellent safety profile like THC, while
lacking its psychoactive effects. Indeed, CB2 receptor ago-
nists showed good anti-nociceptive effects in several animal
models of pain (Guindon and Hohmann, 2008).

A natural selective agonist for CB2 receptors is the plant
volatile BCP, which represents a dietary phytocannabinoid
(Gertsch et al., 2008, 2010). BCP is found in large amounts in
the essential oils of many common spices and food plants, such
as oregano (Origanum vulgare L.), cinnamon (Cinnamomum
spp.), clove (Syzygium aromaticum), rosemary (Rosmarinus
officinalis L.), thyme (Thymus serpyllum), black pepper (Piper
nigrum L.) (Bernardes et al., 2010; Hudaib et al., 2002;
Jayaprakasha et al., 2003; Mockute et al., 2001; Orav et al.,
2004; Zheng et al., 1992). Several health effects have been
attributed to BCP or medicinal plants containing BCP (Russo,
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2011), including anti-inflammatory (Gertsch et al., 2008), local
anesthetic (Ghelardini et al., 2001), anti-carcinogenic (Legault
and Pichette, 2007; Loizzo et al., 2008), anti-fibrotic (Calleja
et al., 2012) and anxiolytic-like (Galdino et al., 2012) activity.
Analgesic effects of BCP were also observed after local
intraplantar application (Katsuyama et al., 2012). There is even
some clinical evidence that aromatic essential oil massage
containing BCP has a beneficial effect on menstrual cramps
(Ou et al., 2012). We have previously shown that BCP exerts an
anti-inflammatory effect in the carrageenan-induced edema
test (Gertsch et al., 2008). More recently, it was shown that
BCP also inhibits inflammation and tissue damage in models of
colitis and nephrotoxicity in a CB2 receptor-dependent manner
(Bento et al., 2011; Horváth et al., 2012).

In the present study, we investigated the analgesic
effects of BCP in formalin-induced inflammation model
and in a model of neuropathic pain, which involves the
partial ligation of the sciatic nerve. To assess the contribu-
tion of CB2 receptors in the analgesic action of BCP we also
carried out experiments in mice lacking CB2 receptors.

2. Experimental procedures

2.1. Animals

Mice with a genetic deletion of the CB2 receptor (CB2
�/�) have been

described previously (Buckley et al., 2000). Mutant mice were
crossed for more than 10 generations to C57BL/6J animals and are
thus considered to be congenic for this background. Animals were
housed in groups of three to five mice per cage under controlled
illumination (light dark cycle 12:12 h) and environmental condi-
tions. All animals were bred in our animal facility, and had free
access to water and food. Male mice were used in this study in the
age of 3–4 months old. Experimental procedures complied with all
regulations for animal experimentation in Germany and were
approved by Landesamt für Natur, Umwelt und Verbraucherschutz
in Nordrhein-Westfalen, Germany (AZ: 9.93.210.35.07.310).

2.2. Drugs

Beta-caryophyllene (5:1 isomer mixture of (E)- and (Z)-BCP)) was
purified from a commercially available 70% pure preparation (TCI
America) by HPLC and analyzed in GC/MS. The 95% pure BCP
contained residual amounts of alpha-humulene and traces of the
BCP oxidation product BCP oxide. BCP was dissolved in olive oil
(Fluka) at a concentration of 0.02, 0.2, 1 and 2 mg ml�1 and frozen in
aliquots at �20 1C. On every treatment day aliquots were defrosted
and gavage-fed at a volume of 5 ml kg�1 with the help of a feeding‐
needle, thus resulting in doses of 0.1, 1, 5 or 10 mg kg�1 respectively.
The synthetic CB2 agonist JWH-133 was purchased in a solution,
dissolved in TocrisolveTM 100, (Tocris Bioscience) and was further
diluted to a concentration of 0.1, 0.5, and 1 mg ml�1, and injected
subcutaneously in a volume of 10 ml kg�1. The CB2 antagonist SR
144528 (kindly provided by NIH) was dissolved in ethanol: chremo-
phor: water (1:1:18) solution at a concentration of 0.1 mg ml�1 and
was injected in a volume of 10 ml kg�1 intraperitoneally (i.p.).
Morphine (Merck KGaA, Darmstadt, Germany) was dissolved in saline
and was injected i.p. in a doses of 5 mg kg�1.

2.3. Inflammatory pain model: formalin test

Male wild type (CB2
+/+) and CB2

�/� mice were injected with 20 ml of
5% formalin into the plantar surface of the right hindpaw. The left
paw served as control. Formalin injection produces a biphasic pain
2 receptor-selective phytocannabinoid beta-caryophyllene exerts
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response. The early phase (1–5 min) is an immediate pain response
caused by the formalin, while inflammatory processes and central
sensitization contribute to late phase (15–30 min) pain. The number
of pain responses such as paw licking, shaking and lifting were
evaluated every 10 s on the ipsilateral and on contralateral sides by
an observer who was blind to experimental groups. Thirty minutes
before the formalin injection, the mice were gavage-fed with BCP,
or vehicle. Other groups of mice were injected subcutaneously with
a reference compound, JWH-133 or vehicle 30 min before the
formalin treatment. As a CB2 antagonist SR 144528 was used and
administered i.p. 15 min before the agonists. As positive control for
analgesia, we treated CB2

�/� animals with 5 mg kg�1 morphine i.p.

2.4. Neuropathic pain model: partial sciatic nerve
ligation (PNL)

To induce neuropathic pain, a partial ligation of the right sciatic
nerve was performed as described (Racz et al., 2008). Male wild
type CB2

+/+ and CB2
�/� mice were operated under isoflurane (2–3%

in 95% O2 for induction and 1.5–2% in 95% O2 for maintenance)
anesthesia. The duration of surgery was no longer than 10–15 min.
One half to one-third of the sciatic nerve at midthigh level was
tightly ligated with a polypropylene thread (9–0). In sham operated
mice the nerve was exposed without ligation.

Mechanical allodynia and thermal hyperalgesia were tested as an
indicator for the development of neuropathic pain by an observer
who was blind to the treatment strategy. Mice were habituated to
the experimental setup for 1 h on three consecutive days before the
behavioral testing started. First, baseline nociceptive responses
were determined. The partial nerve ligation was performed 1 day
later. To assess the neuropathic pain outcome the animals were
then tested on days 3, 6, 8, 10 and 14 after the partial nerve
ligation.

Mechanical allodynia was assessed with a dynamic aesthesi-
ometer (Ugo Basile Biological Research Apparatus), which consists
of an electronically controlled mobile pressure-actuator that is able
to exert a continuously increasing force. Mice were placed in a
transparent Plexiglas chamber with a metal grid floor. The tip of the
actuator (diameter: 0.5 mm) was applied to the middle of the
plantar surface of the hind paw. The forces necessary to trigger
withdrawal responses of the ipsilateral or contralateral hind paws
were recorded. Means were determined by averaging three to five
trials per paw.

Thermal hyperalgesia was evaluated using a Hargreaves appara-
tus (Ugo Basile Biological Research Apparatus, I.R. intensity: 40).
The mean withdrawal latencies were determined by averaging
three to five separate trials. Both mechanical allodynia and thermal
hyperalgesia were evaluated in the same group of animals: the tests
were separated at least by 1 h.

Mice received daily either BCP or vehicle by gavage, or the
reference compound JWH-133 or vehicle by subcutaneous injections
starting 1 day after the partial nerve ligation. On the test days,
drugs were administered directly after the experiments.

2.5. Immunohistochemistry

At the end of the behavioral experiments, 4–5 mice per group were
anesthetized using a Ketavet/Rompun (10 mg kg�1/0.1 mg kg�1)
mixture and intracardially perfused with ice cold phosphate buffer
(PBS) for 5 min followed by 4% PFA (paraformaldehyde) solution for
10 min. The tissue samples was quickly frozen in isopentane on dry
ice and stored at �80 1C.

The section from L4–L6 of the spinal cord was dissected,
embedded in O.C.T. compound (Tissue Teks, Sakura), and sliced
in 16 μm sections on a cryostat (Leica CM 3050; Leica Microsystems).
Six sections per mice from all treatment groups were mounted on
Star frost-coated slides. The slides were permeabilized for 1 h in
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0.5% Triton X-100 (Sigma). After blocking in PBS containing 3%
bovine serum albumine and 10% donkey serum, the slides were
incubated for 42 h at 4 1C with primary antibody against glial
fibrillary acidic protein (GFAP, goat polyclonal, 1:500, Santa Cruz
Biotechnology) or ionized calcium-binding adapter molecule 1
(Iba1, rabbit polyclonal, 1:1000, Wako). A red fluorescent Cy3
anti-goat secondary antibody (1:1000, Jackson ImmunoReasearch)
or green fluorescent Alexa Fluor 488 anti-rabbit secondary antibody
(1:1000, Life Technologies) were used to visualize the signals. The
slides were mounted with Mowiol 4–88 (Roth).

Pictures were acquired using a Zeiss Imager M2 fluorescent
microscope (Carl Zeiss Microimaging). To evaluate microgliosis and
astrogliosis after peripheral nerve injury, pictures of the Iba1 and
GFAP double stained sections were taken with the multichannel
mosaic function of the AxioVision software (Carl Zeiss Microimaging)
in the 20� magnification. The mosaics were converted to one
picture before quantitative analysis. To improve the overlay of the
mosaic pictures the stitching function of the software was used for
representative pictures. An observer, who was blind to experimen-
tal groups, analyzed four to five animals per treatment group using
a macro routine in the Image J 1.42q software. The percentage of
stained area in the dorsal horn compared to whole area was
analyzed. Data were expressed as the difference of the ipsilateral
staining compared to the contralateral staining (% stained area
ipsilateral side�% stained area contralateral side).

2.6. Quantitative real time-PCR

To analyze the expression level of CB2 receptor gene after PNL,
TaqMans gene expression assays were used. Total RNA was isolated
according to manufacturer´s instruction and RNA concentrations
were measured using a spectrophotometer (NanoDrop). mRNA was
transcribed into double-stranded cDNA using Reverse Transcriptase
II and Oligo(dt)12-18 primer (Life Technologies). For each sample
50 ng of cDNA were mixed with gene expression master mix
(containing AmpliTaq Golds DNA Polymerase, Life Technologies)
and with the CB2 gene specific assay. Expression data were then
normalized to a housekeeping gene (β-actin) and analyzed using the
2-ΔΔCt method as described previously (Livak and Schmittgen,
2001).

2.7. Tetrad test

To exclude that BCP produces the psychoactive side effects known
from CB1 receptor agonists, the classical tetrad test was performed
(Martin et al., 1991).

Mice were tested 45 min after an acute oral administration of
BCP (1 mg kg�1 and 10 mg kg�1) for motor activity in the open-
field, immobility (catalepsy) on a ring, anti-nociception in the tail
flick test and the rectal temperature was measured. The control
group of mice was injected intraperitoneally (i.p.) with a dose of
10 mg kg�1 THC (1:1:18 ethanol, cremophor, saline) and tested
20 min after the injection. An observer, unaware of the treatments,
recorded the values.

2.7.1.Open-field test
To assess motor activity mice were placed in the center of an open-
field apparatus (44� 40� 30 cm3) in a dimly illuminated (20 lux at
the ground) room and their activity was tracked by an automatic
monitoring system during 10 min (TSE Systems). Horizontal motor
activity was evaluated by calculating the total distance (m) traveled
by the animals.

2.7.2.Catalepsy
Mice were placed on a vertical tube (diameter: 5.5 cm, heights: 16 cm).
The immobility time was recorded for 5 min. Animals that fell down or
2 receptor-selective phytocannabinoid beta-caryophyllene exerts
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Figure 1 BCP significantly decreased the pain responses in the late phase of the formalin test in CB2
+/+, but not CB2

�/� mice.
A Pain responses of CB2

+/+ mice after 1 and 5 mg kg�1 BCP treatment compared to vehicle treated mice in the formalin test (vehicle
group: n=12; BCP groups: n=12). Analysis of the area under the curve (AUC) showed that late phase responses (15–30 min after
formalin injection) were significantly reduced after oral administration of 5 mg kg�1 BCP (po0.00001). (B) CB2

�/� mice did not show
any significant changes in pain responses after 5 mg kg�1 BCP treatment compared to the vehicle group (vehicle group: n=10;
5 mg kg�1 BCP group: n=10). ***, treatment effect po0.0001. Means7SEM are indicated.

A.-L. Klauke et al.4
jumped off the ring were allowed five more trials. One animal was
excluded from the experiments after five jumps off the ring.

2.7.3.Tail flick
Tail flick latencies were determined using a tail flick apparatus
(Columbus Instruments, OH, USA). Mice were manually restraint and
the tail was placed over a radiant heat source. We measured the
tail withdrawal latency setting the cut-off time at 12 s.

2.7.4.Rectal body temperature
We assessed the body temperature using a rectal thermometer
(BAT-12, Harvard Instruments, Millis, Massachusetts). Temperatures
were recorded before and 1 h after the drug administration. In case
of THC treatment the second measurement was performed 40 min
after the injection. Data are expressed as the difference between
the two body temperatures (ΔT=T after treatment�T before
treatment).

The results of the cannabinoid tetrad were analyzed by one-way
ANOVA or repeated measurement ANOVA (body temperature)

2.8. Statistical analysis

For all experimental results mean values and the standard error of
the means (SEM) were calculated. The statistical analysis was
Please cite this article as: Klauke, A.-L., et al., The cannabinoid CB
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carried out using Statistika 7.1 (StatSoft Inc.). In case of the
neuropathic pain experiments repeated measurements ANOVA was
used to analyze the treatment effects (categorical factors: nerve
injury and treatment. In the formalin test, repeated measurements
ANOVA was used to analyze the time course of pain reactions. For
the analysis of the BCP effect and the JWH-133 treatment, an area
under curve (AUC) was calculated and compared using factorial
ANOVA. The results of the cannabinoid tetrad were analyzed by
one-way ANOVA or repeated measurement ANOVA (body tempera-
ture). In the histological analysis of the astrocyte density the Mann-
Whitney U test was performed. In all tests the level of significance
was set at pr0.05.

3. Results

3.1. BCP reduced inflammatory pain responses in
the late phase of the formalin test

To assess the effect of oral BCP on formalin-induced pain
responses, we administered BCP by gavage 30 min before
the formalin injection. In wild type mice, BCP significantly
altered formalin-induced pain reactions when administered
at a dose of 5 mg kg�1 (Figure 1A, F1,34=7.06, p=0.012). By
2 receptor-selective phytocannabinoid beta-caryophyllene exerts
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analyzing the area under the curve (AUC), we found no
significant treatment effect for the early phase (0–5 min), but
a significant attenuation of pain responses during the late
phase (15–30 min; F1,34=24.41, po0.0001). BCP at a dose of
1 mg kg�1 was ineffective (Figure 1 A). The synthetic CB2
agonist JWH-133 was also effective (F1,34=6.66, p=0.014) at
a relatively high dose of 10 mg kg�1 (Figure 2A). After
calculating the early and late phase AUC, JWH-133 similarly
showed a significant analgesic effect only in the late phase
(F1,35=4.74, p=0.037). Both substances were completely
ineffective in CB2

�/� animals (BCP treatment: F1,23=0.87
p=n.s. JWH-133 treatment: F1,14=0.109 p=n.s.), thus indi-
cating that the antinociceptive effects are indeed mediated
by CB2.

To further substantiate the involvement of CB2 receptors,
we also blocked CB2 receptor signaling with the selective
antagonist SR 144528. The injection of SR 144528 15 min
before JWH-133 at a dose of 1 mg kg�1 (Figure 3A) blocked
JWH-133 analgesia during the late phase (F1,28=2.67 p=n.
s.). Interestingly, a dose of 3 mg kg�1 SR 144528 was
necessary to antagonize the analgesic effect of BCP
(Figure 3B, F1,28=3.53, p=n.s.). A dose of 1 mg kg�1 was
Figure 2 JWH-133 significantly decreased the pain responses in
treatment (10 mg kg�1) slightly but not significantly decreased the p
in the formalin test (vehicle group: n=12; JWH-133 group: n=10). An
responses (15–30 min after formalin injection) differed significantly
(B) CB2

�/� mice did not show any significant changes in pain respon
JWH-133 treated group: n=10). Calculation of area under the curv
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not effective (data not shown). The late phase AUC also did
not differ significantly in the BCP-SR 144528 treated group
compared to the vehicle treated mice (F1,28=2.67, p=n.s.).
Additionally, we treated CB2

�/� mice with morphine (5 mg
kg�1) as a reference compound, which exerts its effect
through the non-cannabinoid m opioid receptors. Morphine
significantly reduced the animal’s nociceptive response
(Figure 4, F1,21=4.96, p=0.037). AUC analysis showed that
morphine exerted a highly significant analgesic effect in the
early phase (F1,21=17.67, po0.001), but not in the late
phase (F1,21=3.39, p=n.s.).
3.2. Neuropathic pain symptoms are diminished
in BCP treated mice

We next measured mechanical allodynia (von Frey test) and
thermal hyperalgesia (Hargreaves test) in BCP treated
versus vehicle treated wild type mice after partial sciatic
nerve ligation, an animal model of neuropathic pain. Base-
line responses were similar in all groups for both tests.
the formalin test in CB2
+/+ but not CB2

�/� mice. A JWH-133
ain responses in CB2

+/+ mice compared to vehicle treated mice
alysis of the area under the curve (AUC) showed that late phase
between the JWH-133 and vehicle treated groups (p=0.037).

ses after 10 mg kg�1 JWH-133 treatment (vehicle group: n=10;
e revealed the same results. Means7SEM are indicated.
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Figure 3 Pretreatment with a selective CB2 receptor antagonist, SR 144528 blocked the analgesic effects of both JWH-133 and BCP
in the formalin test. (A) After 1 mg kg�1 SR 144528 treatment the synthetic CB2 receptor agonist, JWH-133 did not show any
analgesic effect in the late phase of formalin test. (B) Interestingly, the analgesic effect of BCP could be antagonized only with a
higher dose, 3 mg kg�1 of SR 144528. (JWH 133+1 mg kg�1 SR 144528 treated group n=10, BCP+3 mg kg�1 SR 144528 treated group
n=10). Means7SEM are indicated.

Figure 4 Morphine significantly decreased the pain responses in the formalin test in CB2
�/� mice. 5 mg kg�1 morphine significantly

reduced the pain reaction in the formalin test (p=0.037). AUC analysis showed that early phase responses were significantly reduced
after morphine treatment (po0.001). (vehicle group: n=10; morphine group: n=10) ***, treatment effect po0.0001. Means7SEM
are indicated.

A.-L. Klauke et al.6
The partial ligation of the right sciatic nerve induced mechan-
ical allodynia (Figure 5 A, F1,18=387.34, po0.001) and
thermal hyperalgesia (Figure 5B, F1,18=20.40, po0.001) on
Please cite this article as: Klauke, A.-L., et al., The cannabinoid CB
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the ipsilateral, but not the contralateral hind paw. Sham
operated animals showed no alterations in thermal or mechan-
ical pain responses (Supplementary Figure 1).
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7Analgesic effect of beta-caryophyllene
The animals received daily doses of BCP (0.1, 1, 5 or
10 mg kg�1) by gavage, starting 1 day after the surgery. The
doses of 1 mg kg�1 (F1,18=20.66, po0.001) and 5 mg kg�1

(F1,19=20.47, po0.0001) BCP increased mechanical with-
drawal thresholds of ipsilateral hind paws (Figure 5A).
Treatment with 10 mg kg�1 BCP directly exhibited a robust
effect on day 3, which then persisted over the testing
period (F1,18=33, po0.001). In the Hargreaves test only
1 mg kg�1 BCP, but not other doses, reduced thermal
hyperalgesia gradually over the 2-week testing period even
up to the basal level (F1,18=9.12, p=0.007; time� treat-
ment: F4,72=2.93, p=0.026). Administration of the syn-
thetic CB2 agonist, JWH-133 at the doses of 1 and 5 mg kg�1

significantly increased mechanical withdrawal thresholds
(Figure 5A; 1 mg kg�1: F1,16=9.59, p=0.0069; 5 mg kg�1:
F1,18=30,71, po0.001), but failed to diminish thermal
hyperalgesia in the Hargreaves test (Figure 5B). These
results show that CB2 agonists are effective in reducing
mechanical allodynia, but not thermal hyperalgesia, after
sciatic nerve injury.
Figure 5 Effect of different doses (0.1, 1, 5 and 10 mg kg�1) of
allodynia and thermal withdrawal latencies in CB2

+/+ mice. A Chro
JWH-133 significantly rescued PNL induced mechanical allodynia in
significantly rescued PNL induced thermal hyperalgesia in the ipsilat
effect. The mice were tested at day 3, 6, 8, 10 and 14 after surgery
BCP group: n=10; 5 mg kg�1 BCP group: n=11; 10 mg kg�1 BCP gro
group: n=10. **, treatment effect po0.01; ***, treatment effect p
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3.3. BCP inhibits neuropathic pain through CB2

receptor activation

To determine if BCP exerts its effects on the development of
neuropathic pain via CB2 receptor activation, the experi-
ments were repeated in CB2

�/� mice (Figure 6). We have
previously shown that baseline responses of CB2

�/� mice
were similar to CB2

+/+ animals (Racz et al., 2008). Further-
more, the sham surgery did not influence the pain responses
to mechanical and thermal stimuli (Figure 6C and D). After
the partial nerve ligation vehicle treated CB2

�/� mice
developed mechanical allodynia (F1,14=25.97, po0.001)
and thermal hyperalgesia in the ipsilateral side (F1,19=
4.97, p=0.038) and a mirror image of mechanical hyper-
algesia in the contralateral side (F1,14=8.39, p=0.012) as
reported previously (Racz et al., 2008). In these mice
1 mg kg�1 BCP failed to show any effects on mechanical
allodynia or thermal hyperalgesia (Figure 6A and B). Also,
BCP treatment did not influence the responses of sham-
operated CB2

�/� mice (Figure 6C and D).
BCP and JWH-133 (1 and 5 mg kg�1) treatment on mechanical
nic treatment with 1, 5 and 10 mg kg�1 BCP and both doses of
the ipsilateral side. (B) Chronic treatment with 1 mg kg�1 BCP
eral side, while 1 and 5 mg kg�1 JWH-133 treatment showed no
. Vehicle group: n=10; 0.1 mg kg�1 BCP group: n=8; 1 mg kg�1

up: n=10; 1 mg kg�1 JWH-133 group: n=8; 5 mg kg�1 JWH-133
o0.001. Means7SEM are indicated.
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Figure 6 Chronic BCP treatment did not attenuate PNL induced mechanical allodynia (A) and thermal hyperalgesia (B) in CB2
�/�

mice. Additionally to the ipsilateral side, CB2
�/� mice developed a mirror image of pain at the contralateral side after surgery (Racz

et al., 2008). Ipsilateral and contralateral hindpaws of mice were tested in the von Frey test and Hargreaves test to evaluate
mechanical allodynia (vehicle group: n=8; 1 mg kg�1 BCP group: n=9) and thermal hyperalgesia (vehicle group: n=10; 1 mg kg�1

BCP group: n=12). (C) Mechanical withdrawal thresholds of sham operated animals (vehicle group: n=8; 1 mg kg�1 BCP group:
n=11). (D) Thermal withdrawal latencies of sham operated animals (vehicle group: n=11; 1 mg kg�1 BCP group: n=14). CB2

�/�

mice were tested at day 3, 6, 8, 10 and 14 after surgery. Means7SEM are indicated. B=basal responses.
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3.4. BCP treatment reduces the density of spinal
cord glia cell-markers after peripheral nerve injury

Development of neuropathic pain is accompanied by the
activation and proliferation of glia cells in the spinal cord
(Scholz and Woolf, 2007). Therefore, we performed histo-
logical stainings with the microglia marker ionized calcium-
binding adapter molecule 1 (Iba1) and astrocyte marker
glial fibrillary acidic protein (GFAP).

The partial nerve ligation strongly increased microglia
density in the ipsilateral dorsal horns of lumbar spinal cord
sections (Figure 7A and B). Thus, the stained area in
vehicle-treated mice was significantly larger compared to
sham operated animals (surgery effect: U=25, po0.001).
We also observed a microgliosis after BCP treatment (sur-
gery effect: U=23, po0.001), but at a significantly lower
level when compared to vehicle controls (treatment effect:
U=164, p=0.006). The partial nerve ligation induced a
Please cite this article as: Klauke, A.-L., et al., The cannabinoid CB
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significant increase in density of astrocytes in the ipsilateral
dorsal horn of the lumbar spinal sections compared to sham
operation (Figure 7C and D; surgery effect: U=164; p=0.003)
in vehicle controls, but not in BCP-treated animals (U=188,
p=n.s). Together, these results show that BCP treatment
prevented astrocytosis and reduced microgliosis.
3.5. PNL induced the CB2 gene expression in the
spinal cord

To analyze the expression pattern of CB2 receptors after PNL
and BCP treatment, we performed quantitative real-time
PCR. The partial ligation of the sciatic nerve induced an
increase in CB2 receptor mRNA in the ipsilateral side, but
not in the contralateral side, as revealed by a significant
interaction of surgery and side in the factorial ANOVA
(F1,29=4.63, p=0.03). The following Fisher-LSD post-hoc
test revealed that the expression of CB2 in the ipsilateral
2 receptor-selective phytocannabinoid beta-caryophyllene exerts
acology (2013), http://dx.doi.org/10.1016/j.euroneuro.2013.10.008
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Figure 7 Chronic treatment with 1 mg kg�1 BCP reduced the density of microglia and astrocytes in the dorsal horn of spinal cord.
Representative pictures of the Iba1 (A) and GFAP (C) immunostaining in the ipsilateral dorsal horns of the lumbal spinal cord sections
recorded with the 20� magnification objective. Quantitative analysis revealed a reduction of microglia (B) and astrocyte (D) signals
in the ipsilateral dorsal horn after 2 weeks of 1 mg kg�1 BCP treatment (n=4–5 per group). **, treatment effect po0.01; ***, surgery
effect po0.001. Means7SEM are indicated.
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side was significantly increased compared to ipsilateral
sham values (Figure 8; p=0.0096). BCP treatment did not
influenced the CB2 receptor expression (treatment: F1,29=
1.51; p=n.s).
3.6. Absence of psychoactive effects after BCP
treatment

To determine if BCP exerts acute psychomimetic effects
similar to CB1 receptor agonists, we tested BCP-treated mice
in the classical cannabinoid tetrad of tests (Figure 9). Oral
administration of 1 and 10 mg kg�1 BCP did not produce any
significant changes in the open-field activity (F2,20=0.59,
p=n.s.) or body temperature (F2,20=1.3, p=n.s). It also
produced no ring catalepsy (F2,20=1.14, p=n.s.) and had no
analgesic effect in the tail flick test (F2,20=0.33, p=n.s.). In
contrast, our reference compound Δ9-THC elicited the typical
cannabinoid-induced hypomotility (F1,11=29.03, po0.001),
Please cite this article as: Klauke, A.-L., et al., The cannabinoid CB
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catalepsy (F1,11=24.13, po0.001) and hypothermia (F1,10=
54.7, p40.0001), although tail flick analgesia just failed to
reach significance (F1,11=4.51, p=0.057; data not shown).
4. Discussion

Here we demonstrate that the phytocannabinoid BCP, admi-
nistered orally, exerts analgesic effects in animal models of
inflammatory and neuropathic pain. The effects were absent
in CB2

�/� mice and blocked by the CB2 antagonist SR 144528.
They were thus dependent on CB2 receptor signaling. To our
knowledge, this is the first demonstration that a common food
ingredient is highly effective in animal models of chronic pain
at physiologically relevant doses.

The plant volatile and food additive BCP is a selective
natural CB2 receptor agonist with no significant affinity for CB1
receptors (Gertsch et al., 2008, 2010) Acute BCP treatment
significantly reduced carrageenan-induced edema formation,
2 receptor-selective phytocannabinoid beta-caryophyllene exerts
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demonstrating that BCP is able to suppress inflammation via
activation of CB2 receptors. Our present results show that BCP
is also efficacious in another inflammatory pain model, the
formalin test, which is considered as a model of central pain
sensitization (Beltramo et al., 2006). BCP had an analgesic
effect in the late phase of formalin test after acute treat-
ment. Anti-inflammatory and analgesic effects were similarly
reported for other synthetic CB2 receptor agonists like
GW405833 (Clayton et al., 2002) and AM1241(Beltramo
et al., 2006) AM1241 also produced analgesia in different
Figure 9 Treatment with BCP did not elicit psychoactive side effe
administration of 1 and 10 mg kg�1 BCP or vehicle (olive oil) in the c
immobility on a ring (catalepsy), anti-nociception in the tail flic
indicated.

Figure 8 PNL induced a significant up-regulation of the CB2
mRNA level. Expression of the CB2 receptor gene was deter-
mined by quantitative RT-PCR in the lumbar spinal cord dorsal
horn. CB2 expression increased in the ipsilateral side after PNL,
but was not affected by BCP treatment. **, PNL effect
p=0.0096, n=4–5 per group, means+SEM are indicated.
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chemical-induced (capsaicin, formalin) pain models and sub-
stance P-induced extravasation, when treated locally or
systemically (Hohmann et al., 2004; Ibrahim et al., 2003).
The CB2-selective agonist O-3223 reduced inflammatory and
neuropathic pain without any CB1-dependent psychomimetic
side effect (Kinsey et al., 2011). Our reference compound
JWH-133 is a highly selective synthetic CB2 agonist with full
efficacy on rodent CB2 receptor (Beltramo, 2009). However,
there are several discrepancies in the literature considering its
anti-inflammatory effect, which may depend on its poor
bioavailability and overall pharmacokinetic properties. In this
study, JWH-133, injected subcutaneously at a relatively high
dose presented a significant analgesic effect in the formalin
test during the 30 min observation period. This effect was
restricted to the late phase and could be reversed by
treatment of CB2 receptor antagonist, SR 144528. Similar
effects were observed with BCP, which in our hands showed
a very pronounced analgesic effect and interestingly, we also
needed higher SR 144528 concentration to antagonize the BCP
effect than in case of our reference compound, JWH-133. A
possible explanation could be that a natural agonist has a
higher affinity to the CB2 receptors and might improve the
efficiency of CB2 signaling (Shoemaker et al., 2005). We
suppose that reduction of inflammatory processes by BCP
and other CB2 agonists directly contribute to their anti-
nociceptive effects in different inflammatory pain models.

Neuropathic pain produces similar symptoms of hyper-
algesia, allodynia, and spontaneous pain as peripheral tissue
inflammation, but the underlying pathological processes are
induced by nerve injury (Devor, 2006). Pharmacotherapies
for neuropathic pain using morphine, THC, or a combination
cts in CB2
+/+ mice. Mice were tested 45 min after an acute oral

lassical cannabinoid tetrad for motor activity in the open-field,
k test and hypothermia (n=7–8 per group). Means+SEM are
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of THC and cannabidiol (Sativex) produce inadequate pain
relief and at higher doses they have unwanted psychoactive
side effects (Berman et al., 2004; Naef et al., 2003). It is
now well-documented that peripherally expressed CB2
receptors play an important role in the development of
neuropathic pain and can be targeted to reduce chronic
pain associated with nerve injury (Beltramo, 2009; Guindon
and Hohmann, 2008). Our data demonstrate that chronic
BCP treatment reduces mechanical allodynia and thermal
hyperalgesia in a model of neuropathic pain. Importantly,
we found no signs of tolerance during the 2-week adminis-
tration period. On the contrary, the BCP effect became
stronger during the treatment period. As reported for other
CB2 agonists (Kinsey et al., 2011; Rahn et al., 2011), BCP did
not induce any of the CB1 receptor-specific psychomimetic
responses, like hypomotility, catalepsy, hypothermia, or tail
flick analgesia.

The synthetic CB2 selective agonists NESS400, AM1241 and
GW405833 dose-dependently attenuated tactile and thermal
hypersensitivity produced by spinal nerve ligation and a
spared nerve injury model (Beltramo et al., 2006; Ibrahim
et al., 2003). Similar to our results, NESS400 diminished the
nerve injury induced inflammatory processes in the spinal
projection area, like microglia and astroglia activation,
further increased expression of anti-inflammatory interleukin
(IL)-10 and reduced expression of IL-1ß and interferon (IFN)-γ
(Luongo et al., 2010). Intrathecal administration of JWH-133
reversed partial sciatic nerve ligation-induced mechanical
allodynia and this effect was completely abolished in CB2

�/�

animals (Yamamoto et al., 2008). Together these findings
clearly demonstrated that CB2 receptor activation alone is
sufficient for attenuation the neuropathic pain symptoms and
suggest a role of spinal CB2 receptors for amelioration the
neuropathic pain symptoms.

Microglia are thought to initiate the neuropathic pain
processes by the release of proinflammatory chemokines
and cytokines that in turn activates astrocytes and leads to
further microglia activation (Tanga et al., 2004). In an
earlier study we could show that CB2 activation decreases
spinal microglia and astrocyte activation in the spinal cord
after nerve injury (Racz et al., 2008). Latest studies have
shown that in the neuropathic pain processes, microglia
activation decreases to baseline after three weeks, though
astrocytes activation and hypersensitivity remains (Hald
et al., 2009; Tanga et al., 2004). In contrast, CB2

�/� mice
showed an exaggerated glial response that spread to the
contralateral dorsal horn (Racz et al., 2008). BCP treatment
now reduced expression of microglia and astrocytes markers
in the dorsal horn of lumbar spinal cord, which is in line with
the reduced hypersensitivity detected in the behavioral
tests. These findings support our hypothesis that BCP exerts
its anti-inflammatory properties through attenuation of the
spinal glia activation. It was previously shown that BCP
inhibits TH1 cytokines in LPS stimulated whole blood18.

For thermal hyperalgesia, a low dose of BCP, 1 mg kg�1 was
more efficacious than higher doses, thus probably reflecting a
bell shaped dose-response curve, which is commonly observed
with cannabinoid receptor agonists (Calabrese, 2008; Malfait
et al., 2000; Sulcova et al., 1998). The mechanisms underlying
this phenomenon are still not clarified. It is possible that dose-
dependent changes in receptor occupation result in a differ-
ential activation of intracellular signaling cascades and thus in
Please cite this article as: Klauke, A.-L., et al., The cannabinoid CB
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distinct physiological outcomes (Beltramo et al., 2006; Sulcova
et al., 1998). Indeed, there is evidence that 2-AG induced ERK-
MAPK phosphorylation with low ED50, stimulated Ca2+ transi-
ents with a higher ED50, and inhibited adenylate cyclase with
highest ED50 (Shoemaker et al., 2005).Mechanical hyperalgesia,
which is clinically more relevant, did not show such a pro-
nounced dose dependency. It is thus conceivable that thermal
hyperalgesia and mechanical allodynia, which are mediated by
different nociceptive neurons, are differently affected by CB2
agonism.

BCP is the first natural CB2 receptor agonist, which could
orally reduce inflammatory responses in different animal
models of pain. Recently it was shown that BCP inhibits
colon inflammation and protects from cisplatin-induced
nephrotoxicity via CB2 receptors (Bento et al., 2011). An
important question to be considered now is whether or not
this dose is relevant to humans? It has been suggested to
calculate the human dose equivalent based on normal-
ization of the body surface areas (Reagan-Shaw et al.,
2008), which means that an effective dose in mice has to
be divided by 12.3 in order to estimate the human
equivalent dose of a 60 kg adult. Thus, a human daily dose
of 0.08–0.41 mg/kg BCP would correspond to the optimal
dose in mice. We have previously estimated an average
daily BCP intake in the range of 10–200 mg, which corre-
sponds to a dose of 0.16–3.3 mg/kg for a 60 kg human. This
dose would certainly be sufficient for significant CB2 canna-
binoid receptor activation. Thus, it is likely that BCP belongs
to a group of common plant natural products with major
potential impact on human health. The oral intake of this
dietary cannabinoid with vegetable food could be advanta-
geous in the daily routine clinical practice over synthetic
cannabinoid agonists.
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