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a b s t r a c t

The endogenous cannabinoids anandamide (N-arachidonoylethanolamide, AEA) and 2-arachidonoyl
glycerol (2-AG) are upregulated during liver fibrogenesis and selectively induce cell death in hepatic stel-
late cells (HSCs), the major fibrogenic cells in the liver, but not in hepatocytes. In contrast to HSCs, hepa-
tocytes highly express the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) that protects them
from AEA-induced injury. However, the role of the major 2-AG-degrading enzyme monoacylglycerol
lipase (MGL) in 2-AG-induced hepatic cell death has not been investigated. In contrast to FAAH, MGL pro-
tein expression did not significantly differ in primary mouse hepatocytes and HSCs. Hepatocytes pre-
treated with selective MGL inhibitors were not sensitized towards 2-AG-mediated death, indicating a
minor role for MGL in the cellular resistance against 2-AG. Moreover, while adenoviral MGL overexpres-
sion failed to render HSCs resistant towards 2-AG, FAAH overexpression prevented 2-AG-induced death
in HSCs. Accordingly, 2-AG caused cell death in hepatocytes pretreated with the FAAH inhibitor URB597,
FAAH�/� hepatocytes, or hepatocytes depleted of the antioxidant glutathione (GSH). Moreover, 2-AG
increased reactive oxygen species production in hepatocytes after FAAH inhibition, indicating that
hepatocytes are more resistant to 2-AG treatment due to high GSH levels and FAAH expression. However,
2-AG was not significantly elevated in FAAH�/� mouse livers in contrast to AEA. Thus, FAAH exerts
important protective actions against 2-AG-induced cellular damage, even though it is not the major
2-AG degradation enzyme in vivo. In conclusion, FAAH-mediated resistance of hepatocytes against
endocannabinoid-induced cell death may provide a new physiological concept allowing the specific
targeting of HSCs in liver fibrosis.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

There is increasing evidence that the endocannabinoid system,
consisting of arachidonic-acid-derived lipid mediators, termed
endocannabinoids, their specific receptors and enzymes that are
responsible for endocannabinoid biosynthesis and degradation, is
crucially involved in the regulation of hepatic injury and
fibrogenesis.

Endocannabinoids evoke a wide spectrum of physiological
actions that are mostly mediated through the G-protein coupled
cannabinoid receptors CB1 and CB2 [1,2], but can also occur inde-
pendently of these receptors [3–10]. Endocannabinoids were
initially described in the central nervous system where they are in-
volved in the control of e.g. food intake, emotions, pain perception,
or sleep [11–13]. Moreover, endocannabinoids have also been
shown to regulate inflammation, cell death and peripheral lipogen-
esis [14–17].

Although the endocannabinoid system is scarcely expressed in
healthy liver, endocannabinoid receptors are upregulated and
endocannabinoid levels increase significantly during diseased
states of the organ [9,18,19]. Cannabinoid receptor 2�/� mice dis-
played increased hepatic fibrogenesis in a model of CCl4-induced
liver fibrosis, whereas CB1�/� mice showed reduced fibrogenesis
[10,20]. However, the mechanisms by which the endocannabinoid
system regulates liver injury and fibrogenesis are not well under-
stood. Endocannabinoids, such as AEA, 2-AG or N-arachidonoyl
dopamine (NADA) display anti-fibrotic properties in the liver by
selectively inducing cell death of activated hepatic stellate cells
(HSCs), the main fibrogenic cell type in the liver, but not in
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Fig. 1. Different susceptibility to 2-AG-mediated death in HSCs and hepatocytes does not depend on differential MGL expression. (A and B) Serum starved primary mouse
HSCs (A), and primary mouse hepatocytes (B) were treated with the indicated concentrations of 2-AG or vehicle (�) for 18 h or the positive control recombinant murine TNFa
(30 ng/ml) plus actinomycin D (ActD; 0.2 lg/ml). Cell death was determined by LDH release (⁄p < 0.05 vs. vehicle). (C) mRNA expression in mouse hepatocytes and HSCs was
determined by quantitative real time PCR, shown as a fold induction after normalization to 18s (n = 3; ⁄p < 0.05). (D) MGL protein expression was analyzed in mouse HSCs and
hepatocytes by western blotting.
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hepatocytes [7,9,18]. Hepatocyte cell death is considered to pro-
mote fibrogenesis, whereas elimination of activated HSCs may rep-
resent a mechanism to attenuate the fibrogenic response [21].
Interestingly, this selective induction of cell death in HSCs by endo-
cannabinoids occurs independently from the known cannabinoid
receptors.

We previously demonstrated that 2-AG, the most abundant
endocannabinoid in vertebrate animals, mediated reactive oxygen
species (ROS)-triggered, cannabinoid receptor-independent apop-
tosis in primary HSCs, but not in hepatocytes due to different levels
of the antioxidant glutathione in these cell types. However, this
factor alone is unlikely to explain the remarkable difference in sus-
ceptibility to 2-AG-mediated cell death. To further advance the in-
sights of endocannabinoid signaling during liver injury and
fibrosis, we investigated, whether the major 2-AG-degrading en-
zyme monoacyl glycerol lipase (MGL) or alternative degradation
enzymes FAAH, a-b-hydrolase domain (ABHD) 6 or ABHD12 con-
tribute to the differential effects of 2-AG on HSCs or hepatocytes.
2. Material and methods

2.1. Animals and primary cell isolation

Primary HSCs were isolated by a 2-step pronase-collagenase
perfusion from livers of male C57BL/6J wild-type (25–30 g,
n = 32) followed by Nycodenz (Axis-Shield, Oslo, Norway) two-
layer discontinuous density gradient centrifugation as described
[7–9]. Purity of HSC preparations was 94%, as assessed by autofluo-
rescence at day 2 after isolation. Hepatic stellate cells were cul-
tured on uncoated plastic tissue culture dishes as described, not
passaged and considered culture-activated between day 7 and 14
after isolation. Primary mouse hepatocytes were isolated from
male FAAH�/� mice or C57BL/6 J FAAH+/+ controls [22] (n = 6 each)
as described previously [8,18]. All animals received humane care
and all procedures were approved by the local committees for
animal studies (Regierungspräsidium Karlsruhe and LANUV
Recklinghausen).
2.2. Cell treatment and detection of cell death

Hepatocytes were kept in serum-free HDM medium for 12 h be-
fore experiments. HSCs were serum-starved with serum-free
DMEM for 12 h. Cells were treated either with 2-AG (Cayman
Chemicals, Ann Arbor, MI) or vehicle (ethanol; 0.1% final concen-
tration), or actinomycin D (Sigma–Aldrich, Deisenhofen, Germany)
plus murine TNFa (R&D Systems, Minneapolis, MN). Where indi-
cated, cells were pretreated with the MGL inhibitors URB602 or
JZL184, FAAH inhibitor URB597 (all Cayman) or c-glutamyl cys-
teine synthase inhibitor DL-buthionine-(S,R)-sulfoximine (BSO;
Sigma). Cell death was measured by LDH release into the culture
medium according to the manufacturer’s instructions (Roche,
Mannheim, Germany). Apoptosis was visualized by fluorescent
microscopy using an annexin V/propidium iodide-staining kit
(Roche).
2.3. Adenoviral infection

Adenoviruses expressing MGL, FAAH or GFP have been previ-
ously described [8,9]. Hepatic stellate cells were infected with ade-
noviruses at a multiplicity of infection (MOI) of 250 particles/cell
for 12 h, achieving transduction rates of approximately 90%. After
further 12 h, cells underwent treatment with 2-AG.
2.4. Measurement of hepatic endocannabinoid levels

The levels of the endocannabinoids anandamide (AEA) and 2-
AG were measured by liquid chromatography/mass spectrometry
according to Wang et al. [23] in liver tissue from male FAAH�/�

mice or C57BL/6J FAAH+/+ controls (n = 4 each).
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Fig. 2. Monoacyl glycerol lipase, ABHD6 or ABHD12 are not involved in the different cell death susceptibility of HSCs or hepatocytes toward 2-AG. (A and B). Primary mouse
hepatocytes (A, 100 lM) or HSCs (B, 25 lM) were treated with 2-AG in the presence or absence of either MGL inhibitor URB602 or JZL184 (10 lM each, 1 h pretreatment). Cell
death was determined by LDH assay. (C and D) Primary activated mouse HSCs were infected with adenoviruses expressing MGL or GFP. MGL expression is shown by western
blotting (C). 24 h later, cells were treated with 2-AG (25 lM) for 16 h (D). Cell death was determined by LDH release. (E and F) Expression of the alternative 2-AG-degrading
enzymes ABHD6 (E) and ABHD12 (F) was analyzed in mouse brain (control), activated primary mouse HSCs or hepatocytes by western blotting.
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2.5. Detection of reactive oxygen species

Serum-starved HSCs or hepatocytes were loaded with 4 lM of
the redox-sensitive dye 5-(and-6)-chloromethyl-20,70-dichlorodi-
hydrofluorescein diacetate (CM-H2DCFDA; Molecular Probes-Invit-
rogen, Darmstadt, Germany) for 30 min at 37 �C, washed, and
stimulated with agonists. Reactive oxygen species formation was
measured for the indicated time in a multiwell fluorescence plate
reader (Fluostar Optima, BMG) using excitation and emission fil-
ters of 485 nm and 535 nm, respectively.
2.6. Quantitative real time-PCR analysis

RNA was isolated from serum-starved activated primary HSCs
and primary hepatocytes using the TRIzol method (Invitrogen,
Carlsbad, CA). After DNAse treatment, RNA was reverse transcribed
using random hexamer primers. Real time PCR was performed for
40 cycles of 15 s at 95 �C and 60 s at 60 �C using an ABI 7900HT se-
quence detection system (Applied Biosystems, Darmstadt, Ger-
many) as described [9,18].
2.7. Western blot analysis

Electrophoresis of protein extracts and subsequent blotting
were performed as described [8,9,18]. Blots were incubated with
anti-MGL, anti-FAAH (both Cayman), anti-ABHD6 (Abcam, Cam-
bridge, UK) or anti-ABHD12 antibodies (Santa Cruz Biotechnology,
Santa Cruz, CA) at a dilution of 1:1000 overnight at 4 �C. Blots were
reprobed with anti-actin mouse antibody (MP Biomedicals, Eschw-
ege, Germany) as an internal control to demonstrate equal loading.

2.8. Statistical analysis

All data represent the mean of at least 3 independent experi-
ments ± SEM, if not otherwise stated. For the determination of sta-
tistical significance, unpaired Student’s t-tests were performed
using SigmaStat (SPSS, Chicago, IL). P values of <0.05 were consid-
ered to be statistically significant.

3. Results

3.1. 2-AG induces cell death in primary activated mouse HSCs, but not
in primary mouse hepatocytes

We previously showed that 2-AG induced apoptosis in rat and
human primary HSCs [9]. To investigate if 2-AG also induces apop-
tosis in primary mouse HSCs and hepatocytes, we stimulated these
cells with different concentrations of 2-AG. As shown in Fig. 1A and
B, we found a significant induction of cell death in primary mouse
HSCs starting from 1 lM, but not in primary mouse hepatocytes.
To examine, whether this remarkable difference in susceptibility
was due to a differential expression of the major 2-AG-degrading
enzyme MGL, we measured mRNA and protein levels of MGL in
these two hepatic cell populations. Surprisingly, MGL mRNA was
significantly higher expressed in HSCs than in hepatocytes, but
there was no significant difference on the protein level (Fig. 1C
and D).
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3.2. Monoacyl glycerol lipase, ABHD6 or ABHD12 are not involved in
the different susceptibility of HSCs or hepatocytes towards 2-AG-
induced cell death

To examine, whether MGL protected hepatocytes from 2-AG-in-
duced cell death, we first treated hepatocytes with the MGL inhib-
itors URB602 or JZL184 prior to 2-AG exposure (Fig. 2A). MGL
inhibition did not sensitize hepatocytes towards 2-AG-induced cell
death. Accordingly, pretreatment of HSCs with URB602 or JZL184
did not further aggravate 2-AG-mediated HSC death (Fig. 2B). We
next overexpressed MGL in HSCs using an adenoviral vector
(Fig. 2C), but again found no effect on 2-AG-induced cell death in
HSCs (Fig 2D). Together these results indicate that MGL does not
influence the sensitivity of HSCs toward 2-AG-mediated cell death
or accounts for the resistance of hepatocytes against 2-AG. The
alternative 2-AG-degrading enzymes ABHD6 (Fig. 2E) and ABHD12
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indicates cell membrane rupture in necrotic cells. After 2-AG treat-
ment, control HSCs overexpressing GFP showed strong annexin V
staining with the typical apoptotic phenotype (phase contrast,
Fig. 3D. left panel) in contrast to HSCs overexpressing FAAH
(Fig. 3D, right panel). To check, whether FAAH significantly contrib-
utes to degradation of 2-AG in the liver, we measured 2-AG levels in
livers of wild type and FAAH�/�mice. Lack of FAAH did not influence
the intrahepatic level of 2-AG (Fig. 3E; 0.92 ± 0.14 nmol/g in wild
type livers vs. 1.07 ± 0.14 nmol/g in FAAH�/� livers) in contrast to
intrahepatic AEA levels (Fig 3F; 2.05 ± 0.33 pmol/g vs.
23.47 ± 4.80 pmol/g, resp.).
3.4. Fatty acid amide hydrolase protects hepatocytes from ROS-
mediated 2-AG-induced cell death

Next we investigated whether FAAH contributes to the resis-
tance against 2-AG-mediated cell death by pretreating hepatocytes
with the specific FAAH inhibitor URB597. URB597 significantly
sensitized hepatocytes to the effects of 2-AG with more than 36%
cell death vs. no induction of cell death in hepatocytes treated with
2-AG alone (Fig. 4A). We were able to confirm these data with pri-
mary hepatocytes isolated from FAAH-deficient mice (Fig. 4B), sug-
gesting that FAAH is indeed critically involved in the resistance of
hepatocytes toward 2-AG. Since we previously demonstrated that
2-AG induced cell death via formation of deleterious ROS [9], we
sought to investigate whether FAAH expression was involved in
hepatocyte resistance against 2-AG-driven ROS generation. Pre-
treatment with URB597 also increased 2-AG-induced ROS produc-
tion in hepatocytes, whereas URB597 alone did not significantly
increase ROS (Fig. 4C). Pretreatment of FAAH�/� hepatocytes with
BSO to deplete the antioxidant GSH significantly increased 2-AG-
mediated death with 25 lM from 39% to 79% (Fig. 4D, p < 0.05).
Thus, FAAH and GSH are main determinants of 2-AG-induced cell
death in the liver.
4. Discussion

Endocannabinoids hold the potential to induce cell death in
many different cell types, making them interesting tools for treat-
ment of cancer, inflammatory or degenerative diseases [11,15].
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Recent studies have established that the endocannabinoid sys-
tem is involved in the regulation of fibrogenesis in the liver. How-
ever, the mechanisms by which endocannabinoids regulate liver
injury and fibrogenesis are not well characterized and require fur-
ther investigation [19].

Endocannabinoids, including AEA, NADA and 2-AG, can selec-
tively induce cell death in HSCs, which are largely responsible for
excessive accumulation of extracellular matrix in chronically in-
jured livers [7–10,18]. Selective elimination of HSCs has been
linked to the resolution of liver fibrosis, whereas cell death in hepa-
tocytes worsens liver function and enhances fibrogenesis [21]. 2-
AG robustly and dose-dependently induced apoptotic cell death
in activated HSCs of several species [9], including mouse (see
Fig. 1A). During liver injury and fibrogenesis, hepatic levels of 2-
AG rise to up to 2.25 lM [9]. This concentration is sufficient to in-
duce cell death in HSCs ([9], see also Fig. 1A). We previously
showed that hepatocytes are able to cope with the abundant 2-
AG-derived generation of ROS due to significantly higher levels of
antioxidants, such as GSH, in comparison to HSCs [9]. This is one
reason why hepatocytes are resistant against 2-AG-induced cell
death. In this study, we examined, whether the major degradation
enzyme for 2-AG, MGL, contributes to the remarkable difference in
cellular susceptibility of hepatic cell populations toward 2-AG-
induced cell death. It is commonly accepted that 2-AG is primarily
hydrolyzed by MGL to arachidonic acid and glycerol [24,25]. How-
ever, since 2-AG could also serve as a substrate for FAAH, FAAH-
mediated hydrolysis might also play a role in its inactivation
[26–29]. We found several lines of evidence indicating that MGL
does not significantly contribute to the hepatocellular resistance
against 2-AG: (i) both HSCs and hepatocytes express MGL mRNA
and protein, (ii) pharmacological blockade of MGL in hepatocytes
and in HSCs with two specific inhibitors did not increase their sus-
ceptibility toward 2-AG, (iii) adenoviral overexpression of MGL in
HSCs did not rescue them from 2-AG-induced death. Instead, we
demonstrate that the alternative 2-AG-degrading enzyme FAAH,
which degrades AEA with high affinity, accounts for hepatocyte
resistance against 2-AG, as (i) FAAH is highly expressed in hepato-
cytes, but not in HSCs, (ii) adenoviral overexpression in HSCs effi-
ciently rescued these cells from 2-AG-mediated cell death, (iii)
pharmacological inhibition or genetic deletion of FAAH led to in-
creased 2-AG-induced vulnerability of hepatocytes. Moreover, lack
of FAAH in combination with antioxidant depletion leads to a
potentiation of 2-AG-induced cell death, demonstrating the impor-
tance of the hepatocyte defense mechanisms of FAAH expression
[8] and high GSH levels [9] against endocannabinoid-induced cel-
lular damage.

The recently described alternative 2-AG-degrading enzymes
ABDH6 und ABHD12 [30] were not expressed in hepatocytes or
HSCs and are thus unlikely to contribute to the remarkable differ-
ence between the two cell types in 2-AG-mediated cell death
susceptibility.

Moreover, 2-AG can be metabolized effectively by cyclooxygen-
ase-2 (COX-2) [31], which is highly expressed by activated HSCs
[32], but not in hepatocytes [33]. Whether this differential expres-
sion of COX-2 in these cell types contributes to their discrepant
susceptibility toward 2-AG-mediated cell death is currently under
investigation.

Interestingly, FAAH�/� mouse livers displayed elevated AEA but
not 2-AG levels, confirming that FAAH is the major degrading en-
zyme for AEA but not for 2-AG. However, during liver injury and
fibrogenesis, hepatic AEA and 2-AG levels rise significantly [9,18].
It might be possible, that during diseased states of the organ, FAAH
protects against increasing hepatocellular injury caused by rising
levels of both deleterious endocannabinoids [29].

In turn, genetic or pharmacological blockade of MGL leads to
hepatic accumulation of 2-AG but not of AEA [34,35]. Recently,
Cao et al. have shown that pharmacological or genetic inactivation
of MGL leads to protection against hepatic damage in diverse mod-
els of acute liver injury [34], supporting our finding that MGL does
not contribute to protection of hepatocytes against endocannabi-
noid-induced injury, but even promotes it. On the other hand, we
and others were able to show, that blockade of FAAH does not con-
fer hepatic protection but enhances liver damage [8,34]. Thus, we
now provide compelling evidence that FAAH not only protects
hepatocytes from AEA-, but also from 2-AG-induced cell death.

In conclusion, FAAH-mediated resistance of hepatocytes against
endocannabinoid-induced cell death may provide a new physio-
logical concept allowing the specific targeting of HSCs in liver
fibrosis.
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