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Abstract
Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic

approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after

both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for

the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of

CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences, gives the ECS a unique regulatory

capacity for maintaining emotional homeostasis. However, the promiscuity of the endogenous ligands of the CB1 receptor complicates the interpre-

tation of experimental data concerning ECS and anxiety. In fear memory paradigms, the ECS is mostly involved in the two opposing processes of

reconsolidation and extinction of the fear memory. Whereas ECS activation deteriorates reconsolidation, proper extinction depends on intact CB1

receptor signalling. Thus, both for anxiety and fear memory processing, endocannabinoid signalling may ensure an appropriate reaction to stressful

events. Therefore, the ECS can be considered as a regulatory buffer system for emotional responses.
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Introduction

Negative emotions, such as anxiety and fear, alert the organ-
ism to potentially dangerous or harmful stimuli, and can
hence promote survival. However, when anxiety and fear

responses are disproportional in intensity, chronic, irrevers-
ible and/or not associated with any actual risk, they can
impair physical and psychological functions. Such overreac-

tions may be symptomatic of anxiety-related neuropsychiatric
disorders such as generalized anxiety, phobia and post-trau-
matic stress disorder (Graham et al., 2011). Because not all
patients respond to the currently available pharmacothera-

peutical treatment options (Pillay and Stein, 2007), the
search for novel therapeutic approaches deserves high prior-
ity. In recent years, mechanistic evidence for the involvement

of the endocannabinoid system (ECS) in anxiety and fear has
been accumulated. Elucidation of the role of the ECS in fear
and anxiety may provide new therapeutic leads. One of the

targets to study is the presynaptically located cannabinoid
type 1 (CB1) receptor. The endogenous lipid ligands 2-arachi-
donoylglycerol (2-AG) and anandamide (AEA) are synthe-
sized postsynaptically and travel retrogradely in order to

activate CB1 receptors, which in turn reduce neurotransmitter
release. Other constituents of the ECS are the degrading
enzymes fatty acid amide hydrolase (FAAH) for AEA and

monoacylglycerol lipase (MAGL) for 2-AG respectively (for
extensive reviews, see Piomelli, 2003; Kano et al., 2009). The
ECS can be manipulated by pharmacological means using

exogenous drugs such as CB1 receptor agonists, CB1 receptor

antagonists and endocannabinoid degradation inhibitors, as
well as by genetic approaches. Recent studies have provided

new insights into the molecular basis of the modulatory role
of the ECS in anxiety (defined as innate fear for the purpose
of this review) and its involvement in different phases of fear

learning (defined as acquired fear for the purpose of this
review).

Anxiety

ECS as a bimodal regulator of anxiety

Considering the well-known involvement of a plethora of
neurotransmitter systems in the regulation of anxiety

(Millan, 2003) and the function of the CB1 receptors in the
suppression of neurotransmitter release in many different
neuronal subtypes, the ECS can be seen as one of the key

regulatory elements of anxiety behaviour. This wide influence
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of CB1 receptor signalling, together with the molecular
promiscuity of endocannabinoids, has continuously compli-
cated the interpretation of data. In this context, the paradox

of AEA is illustrative. It has biphasic properties, acting as
an anxiolytic agent on the CB1 receptor and as an
anxiogenic agent on the transient receptor potential vanilloid
type 1 channel (TRPV1) (Rubino et al., 2008b). This reveals

a complex scenario where CB1 receptor-dependent pro-
cesses are not the only regulators of anxiety responses by
endocannabinoids.

However, pharmacological approaches using drugs that
selectively target the major elements of the ECS and the use
of genetically modified mice have led to new insights on the

mechanisms underlying the bimodal actions of cannabinoids
in anxiety.

CB1 receptor agonists are reported to induce biphasic

effects, with lower doses being anxiolytic and higher doses
being anxiogenic (Viveros et al., 2005). In addition, similar
bimodal responses were found using CB1 receptor antago-
nists and other drugs interfering with the molecular machin-

ery of the ECS (for review, see Lafenetre et al., 2007). The
consistency of these results has been demonstrated in various
anxiety paradigms, such as the Vogel conflict test, light/dark

box and elevated plus-maze, where different components of
the anxiety state can be measured. Despite the clear role of
the ECS in anxiety, in detail experimental conditions, species

differences and previous experiences of subjects among other
parameters also affect the animals’ reactions, and conse-
quently, the interpretation of the observations.

Several studies using CB1 receptor knockout mice have

reported anxiogenic responses in classical anxiety paradigms
such as elevated plus-maze (Haller et al., 2004b) and light/
dark box (Martin et al., 2002). Nevertheless, contradictory

data do also exist. Together with the susceptibility of the
ECS to environmental variables (see below), the presence of
CB1 receptors on glutamatergic and GABAergic neuronal

subpopulations, could provide an explanation, at least in
part, for these contradictory findings. Depending on whether
the experimental conditions predominantly modulate excit-

atory or inhibitory transmission (i.e. glutamatergic or
GABAergic), the effect of the absence of CB1 receptor signal-
ling will lead to different behavioural outcomes.

Consequently, the recent development of new genetic

models with CB1 receptor deletion in specific neuronal sub-
populations is very useful in understanding the regulation of
anxiety by the ECS. Therefore, we aim at discussing new

insights in the interaction between the ECS and two of the
most important neurotransmitters in the brain, i.e. glutamate
and gamma-aminobutyric acid (GABA). In addition, the

involvement of the monoaminergic system, the basal func-
tionality of the ECS in terms of emotional processing and
the cross-talk with other receptors activated by endocannabi-
noids will be discussed.

ECS susceptibility to environmental variables

Many factors are thought to influence behavioural reactivity,
especially when referring to anxiety. Therefore, there are sev-
eral parameters to consider when interpreting data from anx-

iety assays. The administration route of drugs in

pharmacological approaches represents a relevant starting
point in the analysis of the behavioural results, as anxiogenic
and anxiolytic effects of ECS enhancement have been related

to different brain areas (Rubino et al., 2008a). Thus, the same
dose of delta 9-tetrahydrocannabinol (D9-THC) is able to
promote anxiolytic responses when injected in the prefrontal
cortex (PFC), whereas microinjections in the basolateral

amygdala (BLA) lead to an anxiogenic response. Moreover,
the appropriate selection of the studied species is fundamen-
tal. Haller et al. (2007) have proposed that contradictory

anxiety-like results obtained in rats and mice can be explained
by the different cannabinoid responsiveness of GABAergic
and glutamatergic neurons in these two species. In addition,

data from the analysis of CB1 receptor-deficient animals
revealed that significant differences between CB1 receptor
knockout animals and their wildtype littermates can only be

found under aversive conditions (Haller et al., 2004a; Jacob
et al., 2009). Therefore, the light conditions during the test
and the housing and handling prior to the test are important
parameters to be kept well-defined in experiments involving

anxiety and the ECS. Regarding these variables, FAAH is of
particular interest. A plethora of studies involving pharmaco-
logical blockade of FAAH by the specific inhibitor URB597

demonstrated anxiolytic behaviours in a variety of species
using different anxiety paradigms (Scherma et al., 2008;
Moreira et al., 2008; Patel and Hillard, 2006; Rubino et al.,

2008b). Nevertheless, recent discrepant findings revealed that
the anxiolytic effect of URB597 depends largely on the exper-
imental conditions (Naidu et al., 2007; Trezza and
Vanderschuren, 2008; Haller et al., 2009) and is only signifi-

cant under stress conditions. In summary, dependent on the
stress level, which is associated with the protocol used (unes-
capable vs escapable stressors, aversive conditions, previous

exposure), the animal model used and the administration
route in pharmacological protocols, a bimodal response will
be seen as long as the experimental conditions do not exceed

the buffering function of the ECS.

CB1 receptor-dependent regulation of biphasic

responses in anxiety

Despite the difficulty to generate a physiological model that

considers the vast amount of interactions associated with the
ECS, two neurotransmitters have emerged as points of refer-
ence for the complexity in anxiety behaviour. Evidence from

pharmacological and genetic alterations of GABAergic and
glutamatergic transmission indicates that these neurotrans-
mitters appear to exert their functions on anxiety in opposite

ways (Millan, 2003). Due to the expression of CB1 receptors
on axon terminals of both subpopulations, it is tempting to
predict the relevance of the localization of this receptor as an
explanation for the dual role of the ECS in the regulation of

anxiety.

CB1 receptor influence on glutamatergic and GABAergic
regulation of anxiety. Activation of the CB1 receptor by
endocannabinoids leads to a reduction of neurotransmitter

release by a retrograde mechanism (Wilson and Nicoll,
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2002). The CB1 receptor agonist D9-THC was recently also
shown to inhibit GABA release (Laaris et al., 2010).
Considering the reproducibility of this result using the specific

cannabinoid receptor agonist WIN55,212-2 (Laaris et al.,
2010), the inhibition of GABA release by D9-THC is mediated
by CB1 receptor activation. In addition, CB1 receptor-
mediated inhibition of glutamate release was also demon-

strated in rats (Hoffman et al., 2010) and mice (Kawamura
et al., 2006).

The enhancement of GABAergic transmission via benzo-

diazepines (GABAA receptor positive allosteric modulators)
has been used as an effective acute treatment for patients with
anxiety disorders. Consequently, it could be assumed that a

prominent increase in the endocannabinoid tone, and conse-
quently CB1 receptor activation specifically on GABAergic
neurons, would lead to an anxiogenic response via a decrease

in GABAergic transmission (Roohbakhsh et al., 2009).
However, two important characteristics of the ECS must be
considered to implement this simplified view of the anxiogenic
effect of cannabinoids. First, a different basal activation has

been demonstrated for CB1 receptors expressed on glutama-
tergic neurons and GABAergic neurons, being higher on the
latter (see below). The lower basal activation of the CB1

receptors on glutamatergic terminals suggests that their reac-
tivity to an increase in the endocannabinoid tone would be
higher than that of the CB1 receptor on GABAergic terminals

(Katona and Freund, 2008). Second, the capacity of endocan-
nabinoids to activate other receptors such as TRPV1 could
underlie the anxiogenic effect in some cases (Rubino et al.,
2008b).

On the other hand, excitatory neurotransmission, medi-
ated mostly by glutamatergic transmission, is enhanced by
stress, and stress is a key component regarding the vulnera-

bility of developing mood and anxiety disorders (Simon and
Gorman, 2006). In fact, inhibition of glutamate release in the
periaqueductal gray (PAG) area by CB1 receptor activation

was proposed as an explanation for the anxiolytic effect of
AEA injections into this area (Lisboa et al., 2008). Likewise,
experiments performed by Naderi et al. (2008) showed that

ineffective doses of diazepam (a GABAA receptor positive
allosteric modulator) and the FAAH inhibitor URB597
became effective when applied in combination. These results
suggest a possible synergistic action on glutamatergic inhibi-

tion (by increase in AEA) and GABAergic enhancement (by
the activation of GABAA receptors).

The development of new genetic models, using the Cre/

lox-P recombination system, contributes to the understanding
of the role of ECS in anxiety, via specific deletion of the CB1
receptor on different neuronal subpopulations, in particular

on cortical and striatal GABAergic interneurons (GABA-
CB1-KO) and cortical glutamatergic neurons (Glu-CB1-
KO). The use of these two mutant mouse lines has revealed
an ambivalent role for this receptor not only in anxiety, but

also in feeding behaviour (Bellocchio et al., 2010) and impul-
sivity (Lafenetre et al., 2009). In the latter report, a classical
impulsive trait, namely novelty-seeking behaviour, was shown

to depend on proper functionality of the ECS. In this study,
the lack of CB1 receptor on GABAergic neurons promoted a
more impulsive response towards a novel object and palatable

food, whereas Glu-CB1-KO mice were strongly inhibited in

their approach behaviour. These responses can be related to
anxiolytic and anxiogenic profiles respectively. However, it is
important to keep in mind that impulsivity and anxiety

behaviours are likely to be controlled by different neuronal
mechanisms. In agreement with these results, a fundamental
role to ensure constant levels of exploratory behaviour was
related to the expression of the CB1 receptor on glutamater-

gic terminals in experiments involving exploration of novel
object and novel juvenile conspecifics (Jacob et al., 2009).
Notably, the great majority of the CB1 receptor are located

on GABAergic neurons in the brain. However, the discrete
location of CB1 receptors on glutamatergic neurons enables
endocannabinoids to exert important functions (Monory

et al., 2006). In summary, data from pharmacological and
genetic experiments concerning CB1 receptor involvement in
anxiety merge to the idea that the location of the CB1 recep-

tor is one of the most important factors accounting for the
biphasic effect of the ECS on this behaviour. Nevertheless, the
presence of this receptor in these two relevant neuronal sub-
types is not the only factor explaining the biphasic effect, and

basal functionality should be considered as well.

ECS basal functionality in anxiety (tonic versus phasic
activation). In addition to the distinct abundance of the
CB1 receptor on GABAergic and glutamatergic neurons, it

is of central interest to define the basal activity of the CB1
receptor on both neuronal subpopulations. This property of
the CB1 receptor will determine to what extent it can be
additionally activated by a rise in endocannabinoid levels

depending on the basal activation that is present under
normal circumstances. Recent studies have shown a differ-
ence in basal activity between CB1 receptors localized on

GABAergic and glutamatergic populations (Roberto et al.,
2010; Slanina and Schweitzer, 2005). CB1 receptor antago-
nists such as AM251 and SR141716 have been shown to

increase inhibitory transmission in the central nucleus of
the amygdala (CeA), suggesting a tonic activation of CB1
receptors on GABAergic neurons under basal conditions

(Roberto et al., 2010). This tonic activation was regulated
by the postsynaptic neuron in response to elevated Ca2þ

levels. Moreover, blockade of CB1 receptor moderately,
but significantly augmented excitatory neurotransmission,

indicating a tonic activity of the ECS also on this system
(Slanina and Schweitzer, 2005). In this study, 2-AG was
proposed as the endocannabinoid responsible for the tonic

inhibition of excitatory neurotransmission, and interaction
with the inhibitory network was excluded using GABAA

and GABAB receptor antagonists. Nevertheless, increases

of glutamate release induced by AM251 were never
higher than 110% of the tonic release (Slanina and
Schweitzer, 2005), whereas augmentation of GABAergic
release after treatment with the same CB1 receptor antag-

onist reached levels of 130–140% (Roberto et al., 2010).
Hence, the tonic inhibition mediated by the CB1 receptor
is much more relevant on GABAergic synapses than on

glutamatergic synapses. Consequently, the CB1 receptor
on GABAergic terminals is thought to be a general sup-
pressor of GABA release (predominantly relevant in tonic

activation), whereas the CB1 receptor on glutamatergic
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terminals has a different physiological role, being responsi-
ble for the on-demand inhibition only after excessive gluta-
mate release (predominantly relevant in phasic activation)

(Katona and Freund, 2008).

Neuronal subpopulations classified by CB1 receptor
agonist sensitivities. Keeping in mind the relevance of
the differences between GABAergic and glutamatergic neu-
rons in terms of CB1 receptor basal activity and its abun-

dance, there is another fundamental aspect to consider; the
relation between CB1 receptor localization and sensitivity to
CB1 receptor agonists. Depolarization-induced suppression

of inhibition (DSI) and excitation (DSE) are processes that
can be mediated by the ECS due to the presynaptic localiza-
tion of the CB1 receptor and their property to inhibit neuro-

transmitter release after activation (Wilson and Nicoll, 2002).
Therefore, the term sensitivity refers to the capacity of CB1
receptors to be activated by a CB1 receptor agonist and con-
sequently to mediate DSI or DSE. In fact, DSI and DSE are

not equally executed, as excitatory transmission has been esti-
mated to be around 30-fold less sensitive to cannabinoids
than inhibitory transmission (Ohno-Shosaku et al., 2002).

Accordingly, biochemical experiments using blockers of
enzymes involved in synthesis and degradation of 2-AG and
AEA confirm that the more abundant 2-AG is the most prob-

able endocannabinoid implicated in DSE (Hashimotodani
et al., 2007). These studies also propound the existence of
three different types of synapses classified by their sensitivity
to the CB1 receptor agonist WIN55,212-2. Whereas excit-

atory synapses are homogeneous and have moderate sensitiv-
ities, inhibitory synapses are dichotomized into two distinct
populations, one with a high sensitivity and one that is not

sensitive to WIN55,212-2. Recent experiments have demon-
strated that inhibitory synapses that are sensitive to cannabi-
noid-induced DSI can even be further subdivided into two

different groups. The group with higher sensitivity is formed
by perisomatically projecting basket cells (BC), whereas the
dendritically projecting Schaffer-collateral associated cells

(SCA) belong to the group with lower sensitivity to
WIN55,212-2 (Lee et al., 2010). Given the different neuroan-
atomical features of these two different neuronal subtypes, the
action of a different endocannabinoid ligand cannot be

excluded, due to the fact that the 2-AG synthesizing molecu-
lar pathways are located in dendritic spines (Katona et al.,
2006), and consequently, SCA synapses should have a higher

sensitivity than BC synapses, which is certainly not the case.
Nevertheless, it is worth mentioning that the relative densities
of CB1 receptors on GABAergic and glutamatergic neurons

are not fully reliable indicators per se of their respective
strengths in regulating neurotransmitter release. As a matter
of fact, the presence of presynaptic functional differences
downstream from the CB1 receptor, involving coupling to

G proteins and/or Ca2þ channels, has been shown between
GABAergic and glutamatergic neurons. A recent study
revealed that the capacity to recruit G proteins is more prom-

inent in CB1 receptors located on glutamatergic terminals
than on GABAergic terminals (Steindel et al., 2008), suggest-
ing a compensatory effect to the lower abundance of CB1

receptors on glutamatergic terminals.

Taken together, there are three important characteristics
(localization, basal activation and sensitivity) associated with
CB1 receptor-mediated regulation of anxiety, accounting for

the biphasic effect commonly described. In this scenario,
GABAergic localization, together with high basal activation
and high sensitivity would confer an important role in the
development of anxiogenic responses to cannabinoids to the

CB1 receptor. On the other hand, glutamatergic localization,
low basal activation and low sensitivity are factors that give
the CB1 receptor an essential function in the development of

anxiolytic responses to cannabinoids.

CB1 receptor influence on monoaminergic regulation of
anxiety. Monoaminergic transmission has also been related
to the cannabinoid-dependent regulation of emotional

homeostasis. Local (Page et al., 2008) and systemic (Page
et al., 2007) administration of the CB1 receptor agonist
WIN55,212-2 causes an increase in extracellular norepineph-
rine (NE) in the PFC. In the latter study, the increase in NE

release was accompanied by enhanced expression of tyrosine
hydroxylase, the rate-limiting enzyme in the biosynthesis
of catecholamine neurotransmitters (Boundy et al., 1998).

Notably, these molecular responses were also associated
with anxiety-like behaviours (Page et al., 2007). Further
experiments have demonstrated that chronic treatment with

WIN55,212-2 induced downregulation of the adrenergic
receptor alpha 2A (a2A-AR) in the nucleus accumbens
(Carvalho et al., 2010). Considering that the a2A-AR seems
to function as an autoreceptor by inhibiting NE release from

the presynaptic terminal (Kable et al., 2000), this downregula-
tion provides a molecular mechanism underlying the increase
in NE release. In addition, the strong CB1 receptor agonist

HU-210 was shown to reproduce stress-mediated activation of
the hypothalamic-pituitary-adrenal (HPA) axis (McLaughlin
et al., 2009). In this study, the increase in corticosterone secre-

tion following HU-210 administration was significantly
reduced by pretreatment with antagonists to the a1-adreno-
ceptor (prazosin) and b-adrenoceptor (propranolol). Taken

together, these findings reveal an important role for NE trans-
mission in the development of anxiogenic responses, support-
ing an alternative explanation for the anxiogenic properties of
CB1 receptor agonists at high doses. Additionally, antago-

nists of the serotonergic type 1A (5-HT1A; WAY100635)
and 5-HT2A/2C (ketanserin) receptors attenuated the CB1
receptor-dependent increase of corticosterone secretion.

Thus, the anxiogenic action of the ECS through monoamin-
ergic transmission appears to be related not only to NE but
also to 5-HT. On the other hand, antidepressant-like behav-

iour has also been associated with noradrenergic (locus coe-
ruleus) and serotonergic (dorsal raphe nucleus) enhancement
following treatment with the FAAH inhibitor URB597
(Gobbi et al., 2005). Along this line, FAAH knockout mice

present a clear emotional phenotype characterized by reduced
anxiety and increased sociability when compared to wildtypes
(Cassano et al., 2011). Interestingly, this emotional differenti-

ation was accompanied by increased serotonergic tone in the
PFC. In addition, Bambico et al. (2007) have reported anti-
depressant responses after treatment with the CB1 receptor

agonist WIN55,212-2 comparable to those produced by the
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clinically used selective serotonin reuptake inhibitor (SSRI)
antidepressant citalopram. Again, this antidepressant effect
was characterized by stimulation of serotonergic transmission

in the PFC (Bambico et al., 2007). Taken together, it can be
hypothesized that cannabinoid enhancement of NE transmis-
sion is commonly associated with anxiogenic responses,
whereas cannabinoid-mediated stimulation of serotonergic

signalling is associated with anxiolytic responses after mild
activation (FAAH inhibition, low doses of WIN55,212-2)
and to anxiogenic-like reactions after stronger activation

(HU-210) (McLaughlin et al., 2009). Therefore, cannabinoid
regulation of monoaminergic transmission should be consid-
ered as an important mechanism in the modulation of emo-

tional homeostasis.

Non-CB1 receptor-dependent regulation of biphasic

responses in anxiety

Due to the receptor promiscuity frequently reported for endo-

cannabinoids, the implication of receptors different from CB1
has been proposed to explain certain aspects of the anxiety
behaviour after cannabinoid exposure. Notably, anxiety

responses in both directions have been associated with differ-
ent non-cannabinoid receptors as well, indicating prominent
interaction of the ECS with other signalling systems.

CB2 receptor. The presence of cannabinoid type 2 (CB2)
receptor in brain tissue has recently been related to feeding

behaviour (Ishiguro et al., 2010), pain processing (Bingham
et al., 2007), drug abuse and depression (Onaivi et al., 2008).
However, the role of this receptor in anxiety has never been

fully investigated, although some evidence demands special
attention to this traditionally ignored receptor when referring
to brain-dependent behaviours.

In mice tested in the marble-burying test, only the highest
dose of the CB2 receptor agonist GW405833 produced an
anxiolytic-like effect, accompanied by a clear reduction in

locomotor activity and an increase in cataleptic response
(Valenzano et al., 2005). Due to the alterations in locomotion,
it cannot be clearly concluded that the CB2 receptor agonist
GW405833 modulated anxiety behaviour. In contrast, the

other CB2 receptor agonist JWH015, tested in mice in the
two-compartment black and white box paradigm, reduced
the time spent in the white compartment, while increasing

the time in the black compartment, revealing a clear anxio-
genic-like effect (Onaivi et al., 2008). Interestingly, 2-AG-
mediated suppression of inhibitory transmission was not

blocked by the CB1 receptor antagonist LY320135, but
with the CB2 receptor antagonist AM630 (Morgan et al.,
2009), revealing an interesting role for the CB2 receptor in
(endo)cannabinoid signalling and, consequently, a possible

influence of the ECS on anxiety via CB2 receptor activation.
Owing to the disputed expression of the CB2 receptor in

neuronal tissue, CB2 receptor-deficient mice have been used

traditionally for purposes different from studying the involve-
ment in anxiety regulation. However, in the study by Onaivi
et al. (2008), blocking CB2 receptor expression by an anti-

sense oligonucleotide induced an anxiolytic-like effect in the

elevated plus-maze test. Taken together, these results suggest
that the CB2 receptor could play an important role in the
anxiogenic effects of cannabinoids. Nevertheless, its postsyn-

aptic localization (Brusco et al., 2008), and the marked lower
expression of this receptor in neurons, as compared with the
CB1 receptor, add a new level of complexity to the analysis of
CB1/CB2 receptor-mediated regulation of anxiety (Atwood

and Mackie, 2010).

TRPV1. In the central nervous system, TRPV1 is expressed
in various brain areas such as basal ganglia, hippocampus
and cortex (Cristino et al., 2006). Its effects on anxiety have

recently been linked to the ECS due to the fact that AEA acts
also as a TRPV1 ligand.

Regarding the pharmacology of this receptor, a biphasic

effect was found in the elevated plus-maze after prefrontal
microinjections of methanandamide (mAEA) at low (anxio-
lytic) and high doses (anxiogenic) (Rubino et al., 2008b).
In this study, these effects were counteracted by CB1 receptor

and TRPV1 antagonists respectively. Moreover, overexpres-
sion of FAAH with lentiviral vectors microinjected into the
same area corroborated the anxiogenic profile expected after

blocking the tonic activation of CB1 receptors by AM251.
Complementary studies targeting the PAG showed a similar
pattern, where TRPV1 was required for the anxiogenic effect

of high doses of the CB1 receptor agonist WIN55,212-2
(Campos and Guimaraes, 2009). Finally, the development
of new drugs with a dual blocking profile over FAAH and
TRPV1 provide clear evidence that the CB1 receptor and

TRPV1 perform their actions on anxiety regulation in oppo-
site ways, being activated and antagonized, respectively, to
produce anxiolytic-like responses in mice (Micale et al., 2009).

In addition, one of the clearest pieces of evidence regard-
ing the involvement of this receptor in anxiety behaviour
came from the analysis of TRPV1-deficient mice. In the

study of Marsch et al. (2007), an anxiolytic phenotype was
observed in TRPV1 knockout mice tested in the elevated plus-
maze and the light/dark box when compared with their wild-

type littermates. Finally, based on the capacity to bind AEA,
TRPV1 could be a complementary molecular mechanism for
the anxiogenic effect produced by endocannabinoids, and
consequently, also be a promising target for the development

of new drugs with anxiolytic properties.

5-HT1A receptor. SSRIs have been largely used for the
treatment of anxiety disorders and depression. The main
effect of SSRIs is achieved by the enhancement of serotonin

activity, which involves the desensitization of 5-HT1A inhib-
itory autoreceptors (Nutt and Stein, 2006). Concerning the
implication of the ECS, certain compounds of the plant
Cannabis sativa such as cannabidiol (CBD) have a very low

affinity for CB1 and CB2 receptors. However, they also exert
agonistic effects on 5-HT1A receptors (Russo et al., 2005).
Furthermore, CBD-mediated anxiolytic responses were

reported in different studies using elevated plus-maze and
Vogel conflict paradigms (Moreira et al., 2009). Therefore,
5-HT1A receptors are possibly involved in the anxiolytic

effects of CBD, as demonstrated by microinjections of low
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doses of CBD in the PAG area, which caused anxiolytic-like
effects that are counteracted by the 5-HT1A receptor antago-
nist WAY-100635, but not by the CB1 receptor antagonist

AM251 (Campos and Guimaraes, 2008). In addition, ineffec-
tive doses of 8-OH-DPAT (a selective 5-HT1A receptor ago-
nist) or D9-THC promoted an anxiolytic response in the
elevated plus-maze when administered together in rats

(Braida et al., 2007), emphasizing the involvement of the sero-
tonergic system in the regulation of anxiety by the ECS.

CCK. Cholecystokinin (CCK) is widely distributed through-
out the brain and is acting as a neurotransmitter in the cortex

and limbic regions. Because of its colocalization with many
other neurotransmitters that are involved in emotional
homeostasis (such as GABA, dopamine, serotonin and opi-

oids), CCK has classically been implicated in the development
of anxiety (Rotzinger et al., 2010). Studies published to date
support a role of CCK receptor 2 (CCK2) in the acute mod-
ulation of anxiety and suggest that the BLA is an important

site for this effect. CCK2 agonists are anxiogenic, and CCK2

antagonists reduce potentiated states of anxiety but do not
appear to affect baseline anxiety responses (Rotzinger and

Vaccarino, 2003). Recently, microdialysis experiments have
revealed an increase in GABA efflux underlying the anxio-
genic-like effect produced by the CCK2 agonist CCK-8S

(Antonelli et al., 2009). Paradoxically, the use of benzodiaz-
epines is an established treatment for anxiety disorders.
Muscimol, a potent GABAA receptor agonist, was able to
increase the percentage of open arm time and entries in the

elevated plus-maze, when injected into the CA1 area of rat
hippocampus (Rezayat et al., 2005). A possible explanation
for this paradox could be that CCK and GABA operate on

different steps in a sequence of neuronal events that initiates
and maintains the anxiolytic reaction (Antonelli et al., 2009).
Strikingly, in the same study, sub-threshold concentrations of

the CB1 receptor agonist WIN55,212-2 and CCK-8S, induced
an enhancement of GABA efflux when injected in combina-
tion, suggesting the intriguing possibility of a CB1 receptor-

CCK2 interaction at the membrane level (Fuxe et al., 2008).
Nevertheless, the complexity of the relation between the ECS
and the CCK system increases with the fact that CCK has
opposite actions on inhibitory neurotransmission, which orig-

inates from distinct interneurons (Karson et al., 2008).

Stress/reward induction of ECS plasticity

For proper ECS-dependent regulation of anxiety, it is neces-
sary that every part of the ECS functions optimally.

Therefore, experiences which alter one of its parts (e.g. CB1
receptor or endocannabinoid synthesizing and degrading
enzymes), would lead to an impairment of the physiological
reaction to (endo)cannabinoids. Recent evidence suggests

that stress alters endocannabinoid content in limbic areas
and PFC (Rademacher et al., 2008). Further experiments
have confirmed that chronic psychoemotional stress (viz.

social defeat) blocks the normal reduction of inhibitory post-
synaptic potentials (IPSPs) produced after application of the
CB1 receptor agonist HU-210 to corticostriatal slices of

C57BL/6 mouse brains (Rossi et al., 2008). In addition, this

blockade was counteracted by pretreatment with CB1 and
glucocorticoid receptor antagonists, revealing the importance
of HPA-axis reactivity in this process. CB1 receptor down-

regulation on GABAergic neurons is likely to be the cause for
this absence of reduction due to the fact that basal properties
and sensitivity of these synaptic transmission processes were
not affected. Interestingly, stress did not affect the normal

CB1 receptor-mediated reduction of excitatory postsynaptic
potentials (EPSPs), suggesting a more static profile of the
CB1 receptor on glutamatergic terminals. In agreement with

the data on IPSPs, an increase of AEA levels by genetic or
pharmacological inactivation of its degrading enzyme was
able to reverse the stress-induced effect, and this response

was also mediated by the CB1 receptor (Rossi et al., 2010).
Analyzing the implication of this stress-dependent downregu-
lation of the CB1 receptor, at the behavioural level, Campos

et al. (2010) concluded that an anxiogenic increase of AEA
signalling, via injections of the AEA reuptake inhibitor
AM404 into the ventral hippocampus, turned out to be anxi-
olytic (tested on the elevated plus-maze), when the animals

were pre-exposed to restraint stress. Consequently, it can be
hypothesized that the anxiogenic properties of the enhance-
ment of AEA signalling (via AM404) rely on the activation of

CB1 receptors on GABAergic terminals. In addition, the
stress-mediated downregulation of these CB1 receptors
results in a stronger activation of CB1 receptors on glutama-

tergic terminals, leading to an anxiolytic response. These find-
ings corroborate a model of endocannabinoid adaptation
(explained in Figure 1), involving a stress-mediated re-orien-
tation of endocannabinoid signalling (via CB1 receptor down-

regulation on GABAergic terminals) towards GABAergic
disinhibition in order to prevent overexcitation and restore
the excitatory–inhibitory equilibrium required for appropri-

ate emotional reactivity.
In contrast, stimuli known to be activators of the reward

system, such as voluntary exercise or sucrose consumption in

rodents, were responsible for a larger reduction of the IPSPs
by the CB1 receptor agonist HU-210 (De Chiara et al., 2010).
Notably, this increase in CB1 receptor-dependent inhibition

of IPSPs was not shown on EPSPs, and it was prevented by
previous exposure to psychoemotional stress. In agreement
with the previous data, chronic cocaine administration was
shown to induce sensitization of GABAergic synapses (unlike

glutamatergic) to the stimulation of the CB1 receptor
(Centonze et al., 2007). Interestingly, the enhancement of
CB1 receptor-mediated inhibition of IPSPs triggered by the

rewarding stimuli mentioned above (voluntary exercise,
sucrose consumption and chronic cocaine administration),
was presumably caused by CB1 receptor upregulation on

GABAergic neurons, due to the absence of alterations on
the basal properties and sensitivity. However, the reward-
mediated re-orientation of endocannabinoid signalling (via
CB1 receptor upregulation on GABAergic terminals) towards

GABAergic inhibition should not be considered as a compen-
satory effect like the stress-mediated ECS plasticity. In fact,
CB1 receptor upregulation on GABAergic synapses is

thought to facilitate cocaine-dependent corticostriatal synap-
tic plasticity (Centonze et al., 2007).

Taken together, these findings provide a new view of the

ECS plasticity where the CB1 receptor on GABAergic
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terminals plays a major role. In this context, there are three
important aspects of the susceptibility of CB1 receptors to be
upregulated (stress-mediated) or downregulated (reward-

mediated) that should be considered. First of all, alterations
regarding CB1 receptor-mediated inhibition of neurotrans-
mission are only detectable on GABAergic synapses.
Therefore, this differential susceptibility is a new factor that

helps to understand the different functionality of CB1 recep-
tors on GABAergic and glutamatergic terminals. Second,
stimuli that modify endocannabinoid transmission represent

a possible alteration of the ECS reactivity. Consequently, the
modulation of the behavioural outcome by the ECS depends
on the susceptibility of the CB1 receptor on GABAergic ter-

minals to be up- and downregulated. Third, the consequences
associated with these differential susceptibilities should
be interpreted in the context of the analyzed behaviour.

As a matter of fact, alterations of the CB1 receptor on
GABAergic terminals have been considered as a compensa-
tory mechanism to counteract stress stimuli (GABAergic CB1
receptor downregulation) and also as a facilitator to maintain

the rewarding properties of cocaine (GABAergic CB1 recep-
tor upregulation).

Fear

Besides its involvement in the modulation of anxiety behav-
iours, the ECS also regulates acquired fear induced by specific
cues. Natural stimuli that signal danger (e.g. pain, predators
and loud tones) elicit an innate fear response. This reaction is

used in the fear-conditioning paradigm, where an initially
neutral stimulus (called conditioned stimulus (CS), e.g. an
acoustic, visual or olfactory cue) is presented together with

a fear-inducing stimulus (unconditioned stimulus (US), e.g. a
mild electric shock delivered to the paws). After one or more
pairings of the US with the CS, the subject associates the two

stimuli and the presentation of the CS alone is able to evoke a
fear response (LeDoux, 2000). Instead of a discrete cue such
as a tone and/or light, which are often used as CS, stimuli

present in the environment where the US is presented may
also acquire aversive properties and elicit conditioned emo-
tional responses (called context conditioning) (Radulovic and
Tronson, 2010). In rodents, freezing (Fanselow, 1980) or a

startle response to a sudden strong stimulus other than the
CS (e.g. Chhatwal et al., 2005; Lin et al., 2006) are often used
as an indicator of fear.

After conditioning, the acquired short-term fear memory
is consolidated in a more stable long-term memory, a process
involving new gene expression and protein synthesis (for

review, see Pape and Pare, 2010). Fear expression in a long-
term test (re-exposure to CS-only after at least 24 hours) mea-
sures the combined effects of acquisition, consolidation and
retrieval of the fear memory.

With each CS-only exposure, two opposite processes are
initiated. Short exposure triggers a second round of memory
consolidation, so that new information can be integrated into

the original memory. This process of reconsolidation stabilizes
the original memory and requires protein synthesis. When pro-
tein synthesis is pharmacologically blocked, the fear memory

can be lost (for review, see Tronson and Taylor, 2007).

Figure 1. Proposed model for the stress induction of cannabinoid type 1

(CB1) receptor-mediated adaptation, associated with the emotional

regulation exerted by the endocannabinoid system (ECS). Among the

plethora of neurotransmitters implicated in processing of emotions,

glutamatergic (left) and GABAergic (right) systems play a central role in

the regulation of anxiety. (A), Under basal conditions, the equilibrium

between excitatory and inhibitory transmission provides an appropriate

emotional reactivity. (B), Stressful experiences are characterized by

enhancement of the glutamatergic tone, which leads to an unbalance

between excitatory and inhibitory transmission. (C), The CB1 receptors

on GABAergic terminals represents a dynamic element of the ECS that can

be expressed at a higher or lower level, depending on the characteristics

of the stimuli. The overexcitation induced by stressful stimuli triggers

CB1 receptor downregulation exclusively on GABAergic terminals, which

eventually modifies the balance between GABAergic and glutamatergic

CB1 receptor activation by endocannabinoids. (D), This long-lasting CB1

receptor downregulation on GABAergic terminals leads to a persistent

increase in the strength of GABAergic inhibition of the glutamatergic

transmission. This model represents a precise buffer system for the

homeostasis of emotions.
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Prolonged or repeated exposure to the CS triggers extinction,
resulting in a decline of CS-evoked fear response (for review,
see Myers and Davis, 2007). Three different mechanisms have

been proposed to explain extinction. First, its behavioural
properties indicate that a new inhibitory memory is formed
that competes with the initial fear memory. Second, the orig-
inal fear memory is weakened by changes in synaptic efficacy

induced during fear conditioning. Different from these two
mechanisms that involve associative learning, non-associative
processes play a role in the third mechanism of extinction.

There, the responsiveness to the presentation of the non-rein-
forced CS is decreased by a process called habituation (for
review see Herry et al., 2010; Pape and Pare, 2010). The

reduced response to the CS seen during and shortly after the
extinction session is not stable, because the original memory
reappears with the passage of time (spontaneous recovery), in a

new context (renewal) and upon unpredictable US presenta-
tions (re-instatement) (Myers and Davis, 2007).

Various brain regions have been implicated in the different
phases of conditioned fear learning, with a major role being

attributed to the amygdala (Pape and Pare, 2010). The BLA is
important for acquisition and consolidation of fear memories,
although the actual memory does not seem to be stored in this

structure (McGaugh, 2002; Pare, 2003). For the reconsolida-
tion and extinction of fear memories, the amygdala has also
been implicated. Protein synthesis in this area is required for

proper reconsolidation (Nader et al., 2000). The hippocampus
stores spatial components (i.e. contextual) of the fear memory
(see Pare, 2003). In extinction, the hippocampus and medial
PFC (mPFC), especially the infralimbic (IL) area, are

involved besides the amygdala (Herry et al., 2010; Pape and
Pare, 2010; Sotres-Bayon and Quirk, 2010; Lin et al., 2010).
As spontaneous recovery is impaired in rats with a lesion in

the mPFC, this area is also involved in the reappearance of
fear responses after extinction (Zelinski et al., 2010).
Importantly, limited studies in humans hint at a considerable

similarity of these processes and pathways between species
(Pare, 2003; Delgado et al., 2008).

Components of the ECS, including the CB1 receptor and

the synthesizing and degrading enzymes of the lipid ligands,
are present in many brain areas that were implicated in the
different phases of fear conditioning (Kano et al., 2009).
In recent years, research efforts have focused on elucidating

the role of the ECS in fear memory processing.

Fear responses during acquisition

The effects of (endo)cannabinoid signalling on behaviour
during the initial acquisition phase of conditioned fear have

not been studied extensively. As the ECS is also implicated in
pain processing (Guindon and Hohmann, 2009; Sagar et al.,
2009), studies have mainly attempted to choose conditions
that do not change nociception, a response that was moni-

tored by freezing behaviour during the conditioning session
(Arenos et al., 2006; Tan et al., 2010; Sink et al., 2010), shock
reactivity (Lin et al., 2009) or pain threshold (Marsicano

et al., 2002; Marsch et al., 2007). These precautionary mea-
sures reduce the risk of confounding during the association
process and improve the validity of the investigation of sub-

sequent phases of fear memory processing. The pain

threshold of the complete CB1 receptor knockout mouse
was not different from that of wildtypes upon first exposure
(Marsicano et al., 2002). However, these animals showed a

decreased reaction upon repeated shock presentations (Azad
et al., 2004). Like the results that were discussed above for
anxiety (ECS susceptibility to environmental variables), this
emphasizes the importance of a careful choice of experimental

conditions. In wildtype mice, one study reported increased
freezing during the conditioning session after injection of
the CB1 receptor antagonist AM251 (Reich et al., 2008).

This effect seemed to be specific for paired CS–US presenta-
tions, as it was not seen when the mice received presentations
of the CS only (tone) or the US only (1 s, 0.8mA footshocks)

(Reich et al., 2008), which appears to exclude an effect on
pain processing. The possible involvement of the ECS in
early phases of fear memory processing was also suggested

by the finding of a 20% increase in CB1 receptor mRNA
expression in the IL cortex 48 hours after contextual fear
conditioning (Lisboa et al., 2010).

Fear expression

The fear response to the first CS/context exposure after the

conditioning session, also called fear expression, is a result of
acquisition, consolidation and retrieval of the fear memory.
The involvement of the ECS in fear expression has been stud-

ied using a variety of conditioning protocols, with injections
of CB1 receptor agonists and antagonists, as well as other
manipulators of the ECS at different time points in the
phases of the fear conditioning paradigm (pre-/post-condi-

tioning or pre-exposure/test) in different brain regions or sys-
temically administered in both mice and rats. Not
surprisingly, mixed outcomes were reported. We will focus

our discussion on some important parameters that have
been identified in these studies.

First, as with other neurotransmitters (Calandreau et al.,

2010; Raybuck and Gould, 2010), there seems to be a differ-
ence in the role of the ECS in cued and contextual learning.
Intraperitoneal injections of the CB1 receptor antagonist

AM251 before the (cued) conditioning session were shown
to have opposite effects on fear expression of rats in subse-
quent context and cue tests (Arenos et al., 2006; Sink et al.,
2010). Whereas Arenos et al. found reduced freezing to the

context and increased freezing to the tone after AM251 treat-
ment, the work by Sink et al. showed the exact opposite
effects with similar doses of AM251. Interestingly, the latter

work included adaptation sessions in several contexts before
and between the training and test sessions. This experience
may alter the basal aversiveness of and hence the stress

response to the contexts. Such subtle differences in the initial
state of the animals may invert the effect of ECS manipula-
tions through alterations in the brain’s responsiveness to
(endo)cannabinoids. Differential effects were also reported

after pre-training injections of the CB1 receptor agonist
WIN55,212-2, with a reduced fear response to the context,
but no effect on freezing to the tone (Pamplona and

Takahashi, 2006). The effects in this study (reduced freezing
to the context after agonist treatment) resemble those
reported by Sink et al. (2010) (increased freezing to the con-

text after antagonist treatment), although the authors do not

30 Journal of Psychopharmacology 26(1)



report the use of adaptation sessions. The conditioning pro-
tocol seems to be weaker in this study than in the first two
studies. Therefore, as described for anxiety (see above), the

effects of ECS manipulations on cued and contextual fear
expression seem to depend strongly on subtle external factors.
These external factors include, but are not restricted to, pre-
vious experiences in different contexts.

Second, the time of injections will determine which learn-
ing phases can be affected. Pre-training injections are thought
to influence mostly acquisition, whereas post-training injec-

tions predominantly influence consolidation. Pre-test injec-
tions can only interfere with retrieval (and reconsolidation
and extinction, which are discussed below). In auditory fear

conditioning, systemic AM251 injections increased freezing to
the tone upon re-exposure when given prior to conditioning
(acquisition) or prior to re-exposure (retrieval) (Arenos et al.,

2006; Reich et al., 2008). However, upon injection immedi-
ately after training (consolidation), AM251 did not affect
freezing in the test 24 hours later (Reich et al., 2008).
A study in which the CB1 receptor agonist WIN55,212-2

was injected systemically either before training or before the
24-hour test, confirmed the involvement of the ECS in acqui-
sition (reduced freezing to the context), but found no effect

when the agonist was injected before retrieval (Pamplona and
Takahashi, 2006). In studies of inhibitory avoidance, time-
dependent effects were also observed. Upon pre-training

injection, AEA and the endocannabinoid uptake inhibitor
AM404 had no effect on the subsequent latency to step
onto the grid floor, whereas the CB1 receptor antagonist
AM251 either had no effect or increased this latency at this

time point (de Oliveira Alvares et al., 2008b; Ganon-Elazar
and Akirav, 2009). With pre-test injections, however, AM251
increased the latency in both reports, whereas AEA or

AM404 either had no effect or reduced the latency (de
Oliveira Alvares et al., 2008b; Ganon-Elazar and Akirav,
2009). When injected immediately post training, AM251

reduced the latency to step onto the grid floor in the subse-
quent test (opposite to its effect on retrieval), whereas a low
dose of AEA increased this latency (de Oliveira Alvares et al.,

2008b). Therefore, reduced ECS activity during acquisition
and retrieval seems to increase the subsequent fear response,
whereas reduced ECS activity during consolidation may
reduce the subsequent fear response.

The divergent results from the latter two studies may
reflect a third important source of variation: the site of injec-
tion. Because different brain regions are proposed to play

different roles in the processing of fear and fear learning,
manipulations of the ECS in these regions can be expected
to exert differential effects on the expression of fear. In this

case, almost identical doses of AM251 seemed to be more
effective when injected into the BLA (Ganon-Elazar and
Akirav, 2009) than in the hippocampus (de Oliveira Alvares
et al., 2008b), but the general tendency of the observed effects

was similar. In another study, local pre-test injections of
CBD, a plant-derived cannabinoid with multiple endogenous
targets (Mechoulam et al., 2007), revealed opposite roles for

the IL and the prelimbic (PL) cortex in the retrieval of con-
textual fear: whereas systemic and PL injections reduced
freezing in the context, IL injection increased the fear

response (Lemos et al., 2010).

As summarized in Table 1, the results are rather heteroge-
neous and divergent, although possible factors, such as the
influence of cued versus contextual fear conditioning, the time

point and site of injections and previous experience (e.g. pre-
conditioning adaptation sessions), have to be considered for
interpretation of the data and the understanding of the under-
lying mechanisms. In cued fear conditioning, the exact effect

of pre-training (acquisition) ECS manipulations seems to
depend crucially on such adaptation sessions, whereas pre-
test (retrieval) activation of the ECS generally seems to

decrease fear expression. In more spatial paradigms (e.g. con-
textual fear conditioning), adaptation sessions do not seem to
alter the effects, but a clear effect of ECS manipulation was

also lacking. Post-training (consolidation) and pre-test (retrie-
val) manipulations seem to have opposite effects, with the
former increasing fear response when in the BLA or hippo-

campus and reducing fear upon systemic injections; whereas
ECS activation during retrieval seems to reduce fear when in
the BLA, hippocampus, IL or PAG and to enhance fear
expression when systemic or in the PL.

Fear reconsolidation

It is proposed that upon each re-exposure to the CS or the
shock context, the original fear memory is retrieved and
thereby destabilized so that the memory can be strengthened

and updated with new relevant information before reconsoli-
dation (Tronson and Taylor, 2007). Some studies have
reported the ECS to be involved in this process of reconsoli-
dation. These studies have employed various strategies to dis-

tinguish reconsolidation from extinction: intensified training
(Kobilo et al., 2007), shorter re-exposure (Suzuki et al., 2004;
de Oliveira Alvares et al., 2008a; Suzuki et al., 2008) or post-

re-exposure injection of the substance to be studied (Lin et al.,
2006).

Injections of the CB1 receptor antagonist SR141716 did

not affect reconsolidation of the fear memory (Suzuki et al.,
2004; Kobilo et al., 2007; Suzuki et al., 2008), but abolished
the amnesia induced by anisomycin injections (Suzuki et al.,

2008). In addition, hypo-activation of the ECS by hippocam-
pal AM251 injections improved reconsolidation (de Oliveira
Alvares et al., 2008a), and hyperactivation by AEA,
WIN55,212-2 or HU-210 injections in rats all reduced recon-

solidation of the fear memory. These effects were independent
of injection site (hippocampus, amygdala or insular cortex),
paradigm (cued or contextual fear conditioning, or condi-

tioned taste aversion) and time of measurement (at re-expo-
sure, after re-instatement or spontaneous recovery after
7 days) (Lin et al., 2006; Kobilo et al., 2007; de Oliveira

Alvares et al., 2008a). These studies all point to an amnesic
role of endocannabinoid signalling. Therefore, it seems likely
that activation of the ECS reduces the reconsolidation of fear
memories, whereas hypo-activation of the ECS promotes

their reconsolidation, and thereby leads to enduring fear
responses.

Fear extinction

The ECS plays a major role in extinction in the classical fear

conditioning paradigm (Marsicano et al., 2002) as well as in
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Table 1. Effects of endocannabinoid system (ECS) manipulations on fear expression (the fear response to the first conditioned stimulus (CS)/context-

exposure after conditioning)

Type Timing Site Paradigm Presessions

Fear expression after manipulation

Reference

Observed effect of

injection/knockout

Postulated effect

of ECS activation

Cued Pre-train Systemic Auditory FC Different contextse AM251, AM4113 reduce Increase Sink et al. (2010)

Systemic Olfactory FC Both contexts AM251 reduces Increase Tan et al.(2010)

BLA & PL Olfactory FC Both contexts AM251 reducesa Increase Tan et al. (2010)

mPFC Olfactory FC Both contexts WIN55,212-2 increases;

AM251 reduces

Increase Laviolette and Grace

(2006)

Systemic Auditory FC No AM251 increases Reduction Arenos et al. (2006)

Systemic Auditory FC No AM251 increases Reduction Reich et al. (2008)

Pre-test Systemic Auditory FC No AM251 increases Reduction Arenos et al. (2006)

Systemic Auditory FC No AM251 increases Reduction Reich et al. (2008)

CeA Auditory FC No AM251 increases Reduction Kamprath et al.

(2011)

IL Visual FC Conditioning

context

WIN55,212-2, AM404,

URB597, HU-210

reduce

Reduction Lin et al. (2009)

Knockout Complete Auditory FC No TRPV1 ko reduces Reduction Marsch et al. (2007)

Spatial Pre-train Systemic Contextual FC No AM251 reduces Increase Arenos et al. (2006)

Systemic Contextual FC Different contextse AM251 increases Reduction Sink et al. (2010)

Systemic Contextual FC No WIN55,212-2 reduces Reduction Pamplona and

Takahashi (2006)

BLA Inhibitory avoidance No AM251 increases Reduction Ganon-Elazar and

Akirav (2009)

Post-train BLA Inhibitory avoidance No WIN55,212-2 increases;

AM251 reduces

Increase Campolongo et al.

(2009)

Hippocampus Inhibitory avoidance No AEA increases, AM251

reduces

Increase de Oliveira Alvares

et al. (2008b)

Hippocampus Contextual FC No AM251 reducesb Increase de Oliveira Alvares

et al. (2010)

Systemic Contextual FC No HU-210 reduces Reduction Mackowiak et al.

(2009)

Pre-test Systemic Contextual FC No AM251 reduces Increase Arenos et al. (2006)

Systemic Contextual FC No URB597 increases (in

presence of pain)

Increase Butler et al. (2008)

Systemic Contextual FC No WIN55,212-2 increases;

AM251 reduces

Increase Mikics et al. (2006)

Systemic Contextual FC No WIN55,212-2 reduces/

increasesc
Reductiond Pamplona et al.

(2006)

BLA Contextual FC No SR141716 increases (in

presence of pain)

Reduction Roche et al. (2007)

BLA Inhibitory avoidance No AM404 lower; AM251

increases

Reduction Ganon-Elazar and

Akirav (2009)

Hippocampus Inhibitory avoidance No AM251 increases Reduction de Oliveira Alvares

et al. (2008b)

IL Contextual FC Conditioning context AEA, AM404 reduces;

AM251 increases

Reduction Lisboa et al. (2010)

PAG Contextual FC Conditioning context AEA, AM404 reduces Reduction Resstel et al. (2008)

Knockout Complete Contextual FC No CB1 receptor ko reduces Increase Mikics et al. (2006)

Complete Barnes maze No FAAH ko increases,

blocked by SR141716

Increase Wise et al. (2009)

In paradigms that test fear expression after ECS manipulation, the type of paradigm (cued vs spatial), time point of manipulation (chronic (knockout), pre-training, post-

training, pre-test), site of injection (systemic, various brain areas) and the use or lack of pre-conditioning adaptation sessions can explain part, but not all, of the variation

in outcomes. The postulated effect of ECS activation on fear expression (column 7) is derived from the effects of ECS manipulations; studies that reported no effect are not

included in this table.
aHalf the dose in PL-only or BLA-only produced no effect; bwith a strong shocking protocol, or with a weaker shocking protocol only after previous stress; creduction after a

low dose, increase after a high dose; dat a low dose; eincluding neither the conditioning context nor the extinction context.

BLA: basolateral amygdale, CeA: central amygdale, FC: fear conditioning, IL: infralimbic cortex, ko: knockout, mPFC: medial prefrontal cortex, PAG: periaqueductal gray, PL:

prelimbic cortex.
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fear-potentiated startle (Chhatwal et al., 2005) and in the
more hippocampus-dependent trace (Reich et al., 2008) and
context conditioning paradigms (Suzuki et al., 2004). As sev-

eral groups showed that endocannabinoid signalling is dis-
pensable for extinction of appetitive memories (e.g.
Niyuhire et al., 2007; Manwell et al., 2009), the role of the
endocannabinoids in extinction seems to be specific for aver-

sive memories. In recent years, many studies focused on
uncovering the mechanism of CB1 receptor signalling in
fear extinction and on its function in the different brain

regions involved in extinction learning. For this part of the
review, we selected studies that reported similar initial freez-
ing to CS presentation, so that extinction behaviour could be

compared from a similar starting point.
CB1 receptor knockout mice are impaired in short-term

freezing reduction over a 200-s tone presentation (within-

session), as well as in long-term extinction (between-session)
after cued conditioning (Marsicano et al., 2002). In the same
study, similar results were obtained in wildtype mice treated
with the CB1 receptor antagonist SR141716 before extinc-

tion training. Thus, CB1 receptor signalling did not seem to
be involved in consolidation of the extinction memory, as
the authors found no effect of pharmacological blockade

immediately after extinction training (Marsicano et al.,
2002). CB1 receptor knockout mice also showed a sustained
freezing response in a sensitization paradigm in which fear

response to a new, potentially harmful stimulus was mea-
sured after experiencing an inescapable footshock
(Kamprath et al., 2006). This lack of habituation to neutral
as well as conditioned stimuli suggests that CB1 receptor

signalling is critically involved in this non-associative learn-
ing process (Kamprath et al., 2006). This is consistent with
the findings that endocannabinoids mediate habituation to

homotypic stressors (Patel et al., 2005). To dissect the role
of the ECS in short- versus long-term habituation in extinc-
tion of acquired fear to a cue, Plendl and Wotjak (2010)

compared CB1 receptor knockout mice and wildtype litter-
mates in different exposure modalities. Freezing behaviour
was analyzed in two different protocols, one with shorter

tone presentations (103 20 s) with variable intervals and
the other with constant tone presentation (over 200 s).
These experiments showed that CB1 receptor signalling is
dispensable for between-session extinction, whereas within-

session extinction was strongly dependent on intact CB1
receptor signalling. These recent findings underline the
involvement of the ECS in non-associative habituation

learning. Another study suggested that endocannabinoids
reduce the basal state of responsiveness during an aversive
encounter (Reich et al., 2008). In this study, systemic injec-

tions of the CB1 receptor antagonist AM251 prior to extinc-
tion training sessions in a trace conditioning paradigm
(footshock not directly after CS offset, but after a short
delay), impaired freezing reduction. The strength of this

impairment depended on the current state of the ECS,
rather than on the history of AM251 versus vehicle injec-
tions. Additionally, the fact that the observed levels of base-

line freezing (before the CS) in the extinction context were
also dependent on the current state of the ECS, was inter-
preted to indicate an involvement of CB1 receptor signalling

in the generalization of the fear response (Reich et al., 2008).

An explanation for the high levels of generalized freezing in
the setup used by Reich et al. might be the strong condi-
tioning protocol (eight CS–US pairings), as the fear-redu-

cing effect of the ECS highly depends on the strength of
the harmful stimulus encountered (Kamprath et al., 2009).
In the latter study, several conditional CB1 receptor knock-
out mice with deletion of the CB1 receptor only in specific

neuronal subpopulations were tested to uncover the neuro-
transmitter systems that are involved in CB1 receptor-con-
trolled fear adaptation. The fear-alleviating effect of

endocannabinoids depended on endocannabinoid-driven
modulation of glutamatergic transmission (Kamprath
et al., 2009). This is consistent with the finding that stress

habituation mediated by the ECS also crucially involves the
modulation of glutamatergic neurotransmission (Patel and
Hillard, 2008). In the conditional CB1 receptor knockout

mice used by Kamprath et al. (2009), the CB1 receptor is
deleted on all forebrain glutamatergic neurons, including
some of the main brain regions involved in fear extinction,
i.e. in hippocampus, PFC and BLA. It remains to be inves-

tigated which of these regions with altered ECS-driven mod-
ulation of glutamatergic neurotransmission is involved in the
emergence of the phenotypes observed.

In cued fear conditioning, (endo)cannabinoids are thought
to exert one of their main effects in the BLA, as presentation
of the CS during the extinction trial increases endocannabi-

noid levels selectively in the BLA (Marsicano et al., 2002). In
several recent studies, the relevance of amygdala-specific
endocannabinoid signalling was addressed. BLA-targeted
infusion of CB1 receptor antagonist was found to impair

extinction both in fear conditioning (unilateral SR141716)
(Roche et al., 2007) and in inhibitory avoidance (bilateral
AM251) (Ganon-Elazar and Akirav, 2009). There is recent

evidence that the CB1 receptor is not only present in the
BLA, but also on axon terminals of glutamatergic projection
neurons from BLA to the medial part of the CeA and on

GABAergic neurons projecting from the lateral to the
medial CeA (Kamprath et al., 2011). With local infusion of
CB1 receptor antagonist into the BLA or the CeA, before the

extinction training in a cued conditioning paradigm, the
authors demonstrated that CB1 receptors in the BLA are
involved in long-term extinction processes, whereas CB1
receptors in the CeA are more important for acute fear

expression and within-session reduction of freezing.
As the hippocampus is known to process contextual infor-

mation and thus transfers the contextual representation to the

amygdala, where it is associated with the US (Phillips and
LeDoux, 1992), contextual fear conditioning is often used
to investigate the function of hippocampal endocannabinoid

signalling in fear conditioning. Bilateral infusion of the CB1
receptor antagonist AM251 into the dorsal hippocampus of
rats after an extinction session blocked extinction consolida-
tion as there was no extinction retention detectable in the test

on the following day (de Oliveira Alvares et al., 2008a).
The PFC is also thought to be involved in extinction, as

extinction training induced synaptic plasticity in this area

(Herry and Garcia, 2002). Two recent studies addressed
PFC function in extinction. Local infusion of SR141716 in
the insular cortex of rats blocks the extinction of conditioned

taste aversion (Kobilo et al., 2007). IL infusion of the CB1
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receptor antagonist AM251 blocked cue-alone-induced reduc-
tion of fear-potentiated startle in rats (Lin et al., 2009). Thus,
cortical blockade of CB1 receptor signalling seems to decrease

the inhibitory output of the amygdala, which is necessary to
reduce the fear output (Quirk and Mueller, 2008).

These pharmacological studies with either systemic or
brain region-specific blockade of endocannabinoid signalling

in mice and rats together with the investigations that used
complete or conditional CB1 receptor knockout mice
showed that the ECS is crucial for efficient extinction learn-

ing. Therefore, it is tempting to hypothesize that the activa-
tion of the CB1 receptor would improve extinction, but the
available data reveal a more complicated picture.

Recent studies that found a significant effect of treatment
with CB1 receptor agonist on extinction were mostly per-
formed with rats, suggesting that the agonist treatment

might have species-specific effects (analogous to the data of
Haller et al. (2007) discussed in the section on ECS suscepti-
bility to environmental variables). Several studies with rats
have shown that systemic treatment with AM404, an inhibi-

tor of endocannabinoid uptake and/or metabolism as well as
with URB597, an inhibitor of the AEA-degrading enzyme
FAAH, enhanced extinction in several paradigms

(Chhatwal et al., 2005; Bitencourt et al., 2008; Pamplona
et al., 2008; Manwell et al., 2009) and that this extinction is
more resistant to re-instatement (Chhatwal et al., 2005).

When CB1 receptor agonists were administered locally, sim-
ilar facilitation of extinction was demonstrated for several
brain regions that modulate and process learned fear. Thus,
injection of AEA into the hippocampus of rats directly after

an extinction session led to improved extinction retention on
the following day (de Oliveira Alvares et al., 2008a).
Microinjection of WIN55,212-2 into the BLA of rats before

exposure to elevated platform stress, reversed the effect of
impaired extinction usually induced by the stressor (Ganon-
Elazar and Akirav, 2009). WIN55,212-2 also facilitated

extinction of fear memory when it was infused into the IL
cortex of rats in a dose that had no effect on startle potenti-
ation alone (Lin et al., 2009). Interestingly, intra-IL adminis-

tration of WIN55,212-2 decreased startle potentiation
irrespective of whether rats received CSþ or CS� alone
trials, again strongly pointing to an involvement of (endo)
cannabinoid signalling in long-term adaptation to aversive

situations (Kamprath et al., 2006).
Systemic treatment with CB1 receptor agonist also appears

to influence extinction, but in a dose-dependent manner,

resembling the biphasic effect found for anxiety-related
behaviours. Low doses of WIN55,212-2 were shown to
reduce within-session extinction in a context conditioning

paradigm and even resulted in long-term reduction in a
drug-free test 1 week later (Pamplona et al., 2008).
However, treatment with high doses of this agonist disrupted
extinction in context conditioning (Pamplona et al., 2006) and

had no extinction-improving effect in fear-potentiated startle
(Chhatwal et al., 2005). Chronic treatment with a CB1 recep-
tor agonist leads to impaired extinction as shown in a study

by Ashton et al. (2008), demonstrating that treatment with a
high dose of D9-THC over 6 days strongly delayed cued
extinction. Seven days of chronic treatment with

WIN55,212-2 made rats resistant to the reduction of

fear-potentiated startle, which was induced by extinction
training in non-treated rats (Lin et al., 2008). Also, local infu-
sion of WIN55,212-2 into the IL, which was previously shown

to improve extinction, did not have any effect after 7 days of
chronic treatment. The authors showed that the pretreated
rats had significantly lower levels of CB1 receptor in synap-
toneurosome preparations from the IL and that the inhibition

of GABA release in the IL, which would produce the startle-
reducing effect of WIN55,212-2 was attenuated by 7 days of
chronic WIN55,212-2 treatment (Lin et al., 2008). Thus,

treatment with CB1 receptor agonist improves extinction in
rats when administered in a low dose, whereas it has no effect
or even delays extinction when a high dose or chronic treat-

ment is used. This effect of high dose or chronic agonist treat-
ment might be due to internalization/desensitization of the
CB1 receptor upon strong or continuous activation (Wu

et al., 2008), leading to a resistance to exogenous as well as
endogenous cannabinoids and therefore having the same
effect as blocking CB1 receptor signalling. Thus, the clinical
use of CB1 receptor agonists over a longer time does not seem

to be a promising therapeutic approach.

Conclusions

The ECS is centrally involved in the regulation of anxiety and

fear responses. The recent elucidations of the underlying
mechanisms appear promising in respect to the development
of new therapeutic strategies for the treatment of anxiety
disorders.

It has been commonly accepted that the anxiety state can
be altered by cannabinoids in a bimodal manner, implying an
activation of different subsets of neurons dependent on the

conditions and the doses. Concerning CB1 receptor signalling
pathways, the presynaptic release of two major neurotrans-
mitters, namely GABA and glutamate, is affected by CB1

receptor activation (Laaris et al., 2010; Hoffman et al.,
2010). Based on pharmacological data, CB1 receptors on
GABAergic and glutamatergic terminals can be distinguished

by differences in at least two important characteristics: basal
activity and sensitivity. Consequently, the influence of this
receptor on GABA release seems to be required to develop
anxiogenic-like responses to a high dose of cannabinoids. On

the other hand, activation of the CB1 receptor on glutama-
tergic terminals apparently mediates the anxiolytic-like reac-
tion commonly observed after exposure to a low dose of

cannabinoids.
The results obtained from the analysis of genetically mod-

ified mice in anxiety are in agreement with the idea of oppo-

site effects being exerted by the same receptor on different
neuronal subpopulations in impulsivity and feeding behav-
iour (Lafenetre et al., 2009; Bellocchio et al., 2010). In this
context, the idea previously proposed by Katona and Freund

(2008) about GABAergic CB1 receptors as members of a reg-
ular buffer of inhibitory transmission, in opposition to the
glutamatergic CB1 receptors, which have the task to reduce

excitatory transmission only after excessive glutamate release,
would fit perfectly into this model of CB1 receptor-dependent
regulation of anxiety by cannabinoids. Considering the pre-

dominant action of stress/reward-mediated plasticity on
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GABAergic transmission, the CB1 receptors on GABAergic
terminals could be considered as a dynamic element that can
be altered in order to continuously maintain an appropriate

and optimal emotional reactivity. The CB1 receptors on glu-
tamatergic terminals, on the other hand, would be required
only in situations of more prominent GABA-glutamate
unbalance, emphasizing the ideal profile of the CB1 receptor

to be a pharmacological target in the treatment of anxiety
disorders.

However, the regulation of GABAergic and glutamatergic

systems is not the only mechanism by which the ECS controls
anxiety-related behaviours. Monoaminergic signalling has
been shown to be induced after treatment with both synthetic

CB1 receptor agonists (WIN55,212-2, HU-210) and the
FAAH inhibitor URB597 (Page et al., 2007; Gobbi et al.,
2005). This enhancement of monoaminergic transmission

has been related to anxiolytic and anxiogenic responses,
depending on the specific neurotransmitter affected. In this
context, increases of NE release in the locus coeruleus and
PFC commonly led to anxiogenic responses, whereas seroto-

nergic enhancement in the dorsal raphe nucleus and PFC
induced anxiolytic responses accompanied by increased socia-
bility and antidepressant-like behaviours. Thus, monoamin-

ergic transmission must be considered as an important
mechanism in the modulation of emotional homeostasis by
the ECS.

Furthermore, the promiscuity of (endo)cannabinoids
entails also non-CB1 receptor-dependent processes, which
can then account for certain aspects of the anxiety behav-
iour after cannabinoid exposure. Regarding the anxiolytic

response, the serotonin receptor 5-HT1A has been shown to
be involved in the effect of CBD. On the other hand,
TRPV1 seems to be required for the anxiogenic effect of

AEA.
Fear conditioning, the most widely used paradigm to

investigate fear behaviour, involves various phases of learn-

ing, introducing a new level of complexity as compared to
anxiety tests. The ECS has been shown to be differentially
involved in the various phases of fear learning.

A proper interpretation of the participation of the ECS in
the phase of fear memory acquisition can be compromised by
the fact that the ECS regulates pain processing. However,
exogenous cannabinoids hardly affect the fear response

during the training session, as long as the dose is carefully
chosen outside of the range in which the ECS modulates
nociception. A lack of effect of ECS manipulation on the

phase of acquisition provides a well-comparable starting
point of the fear response between the different (treatment)
groups, assuring the validity of the analysis of ECS involve-

ment in subsequent phases of fear learning.
The role of the ECS becomes increasingly prominent in the

later phases of the fear-conditioning paradigm. Fear expres-
sion (the result of acquisition, consolidation and retrieval)

seems to be affected more strongly by (endo)cannabinoids
than the fear acquisition phase. However, this effect is not
robust and seems to be highly dependent on the multiple fac-

tors described in Table 1.
The role of the ECS is clearer in the next two phases of the

paradigm, i.e. in reconsolidation and extinction, which are

triggered by CS-only exposures. Interestingly, activation of

the ECS, achieved by different substances, in various para-
digms and conditions, deteriorates reconsolidation. This
emphasizes the amnesic properties of endocannabinoid sig-

nalling. In contrast, intact CB1 receptor signalling appears
to be essential for proper extinction of aversive memories.
Therefore, it may be postulated that the ECS tone determines
the balance between the processes of maintaining or strength-

ening the original memory (reconsolidation) and the estab-
lishment of a new memory or habituation to the situation
(extinction). In this way, the ECS may protect the organism

from over-reaction to aversive events. This suggests that
endocannabinoid-mediated plasticity may play a similar role
in fear memory-processing as in anxiety, namely to ensure an

appropriate reaction to negative events. Thus, the ECS may
be considered as a regulatory buffer system for emotional
responses.

Furthermore, the effects of exogenous cannabinoid admin-
istration depend on the pre-existing activity of the ECS,
which in turn depends on the initial state of the system as
influenced by the life history of the animal (e.g. stress) (de

Oliveira Alvares et al., 2008a). This may offer an explanation
for the strong dependence of reported effects on subtle differ-
ences in the experimental conditions used. It also emphasizes

the importance of determining the appropriate physiological
range for these conditions (e.g. dose, shock intensity, strength
of extinction protocol). The importance of administration of

the right dose can be deduced from the contrasting data on
extinction obtained with low and high doses of CB1 receptor
agonists (Pamplona et al., 2006; 2008).

To further elucidate the underlying mechanisms through

which the ECS modulates fear behaviour, it is essential to
characterize its downstream signalling pathways. In particu-
lar, it should be established whether ECS signalling in fear

processing has any differential effects on GABAergic and glu-
tamatergic signalling, as found in anxiety regulation.

Finding new molecular mechanisms that underlie ECS

modulation of aversive memories and anxiety will be helpful
in the search for novel therapeutic approaches. Side effects
associated with current CB1 receptor-based therapies

are related to the ubiquitous presence of the CB1 receptor
on different neuronal subpopulations. Therefore, new
approaches may wish to focus specifically on targeting par-
ticular neuronal subpopulations of interest.
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