Protective role of palmitoylethanolamide in contact allergic dermatitis

S. Petrosino1,2,3, L. Cristino1,4, M. Karsak5, E. Gaffal6, N. Ueda7, T. Tüting6, T. Bisogno1,2, D. De Filippis8, A. D’Amico8, C. Saturnino3, P. Orlando1,9, A. Zimmer5, T. Iuvone1,8 & V. Di Marzo1,2

1Endocannabinoid Research Group; 2Institute of Biomolecular Chemistry, C.N.R., Pozzuoli (Naples), Italy; 3Department of Pharmaceutical Sciences, University of Salerno, Fisciano (Salerno), Italy; 4Institute of Cybernetics, C.N.R., Pozzuoli (Naples), Italy; 5Department of Molecular Psychiatry, University of Bonn, Germany; 6Laboratory of Experimental Dermatology, University of Bonn, Bonn, Germany; 7Department of Biochemistry School of Medicine, Kagawa University, Kagawa, Japan; 8Department of Experimental Pharmacology, University of Naples "Federico II", Naples, Italy; 9Institute of Protein Biochemistry, C.N.R., Naples, Italy


Keywords
chemokines; contact allergens; dermatology; dermatology contact dermatitis; pharmacology.

Correspondence
Vincenzo Di Marzo, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (Naples), Italy.

Accepted for publication 30 September 2009
DOI:10.1111/j.1398-9995.2009.02254.x
Editor: Thomas Bieber

Abstract

Background: Palmitoylethanolamide (PEA) is an anti-inflammatory mediator that enhances the activation by anandamide (AEA) of cannabinoid receptors and transient receptor potential vanilloid type-1 (TRPV1) channels, and directly activates peroxisome proliferator-activated receptor-α (PPAR-α). In mice, 2,4-dinitrofluorobenzene (DNFB)-induced contact allergic dermatitis (CAD) in inflamed ears is partly mediated by the chemokine Monocyte Chemotactic Protein-2 (MCP-2) and accompanied by elevation of AEA levels. No datum is available on PEA regulation and role in CAD.

Objective: We examined whether PEA is produced during DNFB-induced CAD, and if it has any direct protective action in keratinocytes in vitro.

Methods: Eight- to ten-week-old female C57BL/6J wild-type and CB1/CB2 double knock-out mice were used to measure PEA levels and the expression of TRPV1, PPAR-α receptors and enzymes responsible for PEA biosynthesis and degradation. Human keratinocytes (HaCaT) cells were stimulated with polyinosinic acid-polycytidylic acid [poly-(I:C)], and the expression and release of MCP-2 were measured in the presence of PEA and antagonists of its proposed receptors.

Results: 2,4-Dinitrofluorobenzene increased ear skin PEA levels and up-regulated TRPV1, PPAR-α and a PEA-biosynthesizing enzyme in ear keratinocytes. In HaCaT cells, stimulation with poly-(I:C) elevated the levels of both PEA and AEA, and exogenous PEA (10 μM) inhibited poly-(I:C)-induced expression and release of MCP-2 in a way reversed by antagonism at TRPV1, but not PPAR-α. PEA (5–10 mg/kg, intraperitoneal) also inhibited DNFB-induced ear inflammation in mice in vivo, in a way attenuated by TRPV1 antagonism.

Conclusions: We suggest that PEA is an endogenous protective agent against DNFB-induced keratinocyte inflammation and could be considered for therapeutic use against CAD.

Contact allergic dermatitis (CAD) is an inflammatory condition of the skin defined as a delayed hypersensitivity reaction that occurs after repeated exposure to an allergen. CAD can be induced by numerous irritants and/or allergens (nickel, rubber, plants, medications) and the corresponding rash develops within 48–72 h of re-exposure to the same antigen. Additional symptoms are itching, redness, swelling and the formation of small skin blisters. CAD develops in two steps: (1) contact of an allergen with the skin and its binding to Langerhans cells, which then travel to lymph nodes, where the allergen is exposed to T-lymphocytes; the allergen is also taken up by resident and newly recruited dendritic cells.
which migrate to lymph nodes and prime the T-lymphocytes; and (2) re-exposure to the allergen, which causes the activation of primed T-lymphocytes, with subsequent release of inflammatory mediators that are responsible for the features of inflammation and keratinocyte injury (1, 2).

Palmitoylethanolamide (PEA) is an endogenous lipid produced by most mammalian cells (3–5) and exhibiting anti-inflammatory and anti-nociceptive properties (6–10). It is biosynthesized from a phospholipid precursor, N-palmitoylethanolamine, through the catalytic action of N-acyl-phosphatidyethanolamine-selective phospholipase D (NAPE-PLD) (11). PEA inactivation to palmitic acid and ethanolamine can be catalysed by fatty acid amide hydrolase (FAAH) (12, 13) and, more specifically, by N-acylethanolamide-hydrolysing acid amidase (NAAA) (14, 15). The molecular mechanism of action of PEA is still controversial and several hypotheses have been put forward to explain its anti-inflammatory and analgesic effects. These hypotheses include the following: (1) an autacoid local inflammation antagonism mechanism through which PEA acts by down-regulating mast-cell degranulation (16–19); (2) the direct stimulation of the cannabinoid CB2 receptor or of an as-yet uncharacterized CB2-like receptor, as suggested by results obtained in different in vivo studies using the CB2 antagonist SR144528 (6, 8, 20, 21) (but see below); (3) an 'entourage effect' (22, 23), through which PEA acts by enhancing the anti-inflammatory and anti-nociceptive effects exerted by another fatty acid ethanolamide, anandamide (AEA), which is often produced together with PEA. AEA acts by activating the cannabinoid CB1 and CB2 or the transient receptor potential vanilloid receptor type 1 (TRPV1) channel, and PEA might potentiate these actions either via inhibition of the expression of FAAH (24), for which AEA is also a substrate, or through allosteric stimulation of TRPV1 receptors (25–27), or both (28). Activation of TRPV1 receptors is then immediately followed by their desensitization and refractoriness to subsequent stimulation by inflammatory or nociceptive stimuli (29–31); (4) last, a specific molecular target has been found for PEA, the nuclear peroxisome proliferator-activated receptor-α (PPAR-α) (32), which clearly mediates several anti-inflammatory effects of this compound (32). Interestingly, it was found that the CB2 antagonist SR144528, previously described to antagonize PEA analgesic and anti-inflammatory effects (see above), also antagonizes PPAR-α (33), thus arguing against a role of CB2 receptors in these actions.

A number of studies have shown the involvement of the cannabinoid and TRPV1 receptors in animal models of CAD (34). The levels of the other most studied endocannabinoids, 2-arachidonoylglycerol (2-AG), are markedly elevated in the ears following a challenge with oxazolone in sensitized mice (35). The swelling following the challenge is suppressed by the administration of SR144528, a CB2 receptor antagonist, either immediately after sensitization, or upon the challenge. Moreover, the treatment with SR144528 suppresses the expression of mRNAs for pro-inflammatory cytokine, Monocyte Chemotactic Protein-1 and tumour necrosis factor-α, following a challenge with oxazolone. These results suggest that activation of CB2 receptors by 2-AG might contribute to oxazolone-induced CAD (35), and are in agreement with previous data showing that SR144528 and another inverse agonist, JTE-907, reduce carrageenan-induced mouse paw oedema (36) and cutaneous inflammation induced by 2,4-dinitrofluorobenzene (DNFB) (37). By contrast, Karsak et al. (38) demonstrated that DNFB-treated mice lacking both CB1 and CB2 receptors exhibit exacerbated allergic ear inflammation, and that AEA and 2-AG levels are elevated in the ears of both wild-type (WT) mice and, particularly, CB1/CB2 double knockout (KO) mice. CB1 and CB2 receptor antagonists, SR141716A (Rimonabant) and SR144528, respectively, also exacerbate allergic inflammation, whereas the CB1/CB2 receptor agonist, Δ⁹-tetra-hydrocannabinol attenuates inflammation by down-regulating the expression in keratinocytes of the chemokine MCP-2 (38). These results established a protective role of the endocannabinoid system during CAD. Finally, there is also evidence for a protective role of the vanilloid TRPV1 receptor in oxazolone-induced CAD in mice (39).

The aim of the present study was to investigate whether, similar to AEA and 2-AG (38), also PEA is produced during CAD to exert a protective action on keratinocytes via MCP-2 down-regulation. Therefore, we have first measured PEA concentrations in the ears of DNFB-treated WT and CB1/CB2 double knockout (KO) mice, and the expression, in keratinocytes, of its two proposed direct or indirect targets, PPAR-α and TRPV1, and biosynthetic and degrading enzymes, NAPE-PLD and NAAA, respectively. Next, we have investigated the formation and possible MCP-2-downregulatory effects of PEA in cultured human keratinocytes (HaCaT) challenged with polyinosinic acid-polycytidylic acid [poly-(I:C)]. Finally, we have studied in vivo in WT mice the effect of PEA systemic administration on DNFB-induced ear inflammation and MCP-2 expression.

Materials and methods

Chemicals

2,4-Dinitrofluorobenzene was purchased from Sigma-Aldrich (Milano, Italy). Capsazepine (cpz), iodio-resiniferatoxin (1-RTX) and MK-886 were purchased from Tocris (Bristol, UK). poly-(I-C) was purchased from Invivogen (Labogen S.r.l., Milano, Italy). PEA and SR144528 were a gift from Epitech group S.r.l. (Padova, Italy) and Sanofi-Aventis (Montpellier, France), respectively. Cell culture media and antibiotics were purchased from Sigma-Aldrich. Human MCP-2 ELISA kit was purchased from RayBiotech, Inc (Tebu-Bio S.r.l., Milano, Italy).

Immunocytochemical normal sera, avidin–biotin kit, antigen unmasking solution, mouse on mouse kit and biotinylated secondary antibodies were purchased from Vector Laboratoires (Burlingame, CA, USA). The 3,3-diaminobenzidine (DAB) kit was purchased from Sigma-Aldrich. The rabbit anti-goat fluorochrome conjugated secondary antibody Alexa 546 was purchased from Invitrogen Molecular Probes (Paisley, UK). The anti-cytokeratin, anti-TRPV1, anti-PPAR-α
mice per group were used for these experiments. Anti-CB$_2$ primary antibody and related immunizing peptide were purchased from Abcam (Cambridge, UK) whereas anti-NAPE-PLD, anti-NAAA and the respective immunizing peptides were developed in the laboratory of Prof. Ueda (11, 40).

**Animals**

Eight- to ten-week-old female C57BL/6J mice were obtained from Harlan. CB$_1$/CB$_2$ double knock-out mice (KO/CTRL; KO/DNFB) and of the corresponding WT mice (WT/CTRL; WT/DNFB) were sectioned in five serial sections 6 µm thick and collected onto gelatine-coated slides. The ears used for these experiments were the same as those used previously to identify CB2 receptors in keratinocytes (38). After de-paraaffination, the first series was processed four double CB2/cytokeratin immunoreactivity (ir); the second for TRPV1-ir, the third for PPAR-α-ir, the fourth for NAPE-PLD-ir and the fifth for NAAA-ir. All of the sections were processed with an antigen unmasking solution before the immunohistochemistry treatment, and then reacted in H$_2$O$_2$ (0.3%). Only the sections used for double CB$_2$/cytokeratin-ir were further processed with mouse immunodetection solution in order to prevent the nonspecific link between the mouse tissue and the monoclonal cytokeratin antibody. For the double CB$_2$/cytokeratin-ir, the sections were incubated in a normal donkey serum (NDS) mixture containing CB$_2$ rabbit polyclonal (1 : 50 in NDS) and cytokeratin monoclonal (1 : 300 in NDS) antibodies. The cytokeratin-ir was revealed through donkey anti-mouse IgGs (1 : 150 in NDS) and 0.05% DAB whereas the CB$_2$-ir was revealed through Alexa 546 donkey anti-rabbit IgGs (1 : 100 in NDS).

**DNFB-induced CAD in mice**

2,4-Dinitrofluorobenzene was diluted in acetone/oil (4 : 1) immediately before use. Mice were sensitized by painting 50 µl of 0.2% DNFB on the shaved abdomen on two consecutive days. Controls were treated with 50 µl acetone/oil. Ears of mice were painted with 10 µl of 0.3% DNFB on day 5. Ear thickness was measured 24, 48 and 72 h after challenge using an engineers micrometer, and ear swelling was calculated in each mouse as the difference in ear thickness between the unchallenged and the challenged ear. Statistical significances were evaluated with the Wilcoxon–Mann–Whitney two-samples test. After the second challenge and kill, the ears were removed and immediately immersed into liquid nitrogen, to be stored at −80°C until extraction and purification of PEA. N = 9 mice per group were used for these experiments. These mice were the same that had been used previously for AEA and 2-AG level determination (38).

**PEA measurement in the ears of DNFB-sensitized and challenged mice**

Ears were homogenized in chloroform/methanol/Tris–HCl 50 mM pH 7.4 (2 : 1 : 1, v/v) containing 50 pmol of [$^3$H]$_2$PEA as internal standard (41). The lipid-containing organic phase was dried down, weighed and precipitated by open-bed chromatography on silica gel. Fractions obtained by eluting the column with 9 : 1 (by vol) chloroform/methanol were analysed by liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry (LC–APCI–MS) by using a Shimadzu HPLC apparatus (LC–10ADVP) coupled to a Shimadzu (LCMS-2010) quadrupole MS via a Shimadzu APCI interface (42). LC–APCI–MS analyses were carried out in the selected ion monitoring mode (43), using m/z values of 304 and 300 (molecular ions +1 for deuterated and undeuterated PEA). PEA levels were calculated on the basis of its area ratio with the internal deuterated standard signal area, its amount in pmols normalized per mg of lipids and compared by ANOVA followed by the Bonferroni’s test. N = 9 mice per group were used for these experiments.

**Immunohistochemical analysis for CB$_2$, TRPV1, PPAR-α, NAPE/PLD and NAAA**

Paraffin-embedded ear skin of CTRL and DNFB-treated CB$_1$/CB$_2$ KO mice (KO/CTRL; KO/DNFB) and of the corresponding WT mice (WT/CTRL; WT/DNFB) were sectioned in five serial sections 6 µm thick and collected onto gelatine-coated slides. The ears used for these experiments were the same as those used previously to identify CB2 receptors in keratinocytes (38). After de-paraaffination, the first series was processed four double CB2/cytokeratin immunoreactivity (ir); the second for TRPV1-ir, the third for PPAR-α-ir, the fourth for NAPE-PLD-ir and the fifth for NAAA-ir. All of the sections were processed with an antigen unmasking solution before the immunohistochemistry treatment, and then reacted in H$_2$O$_2$ (0.3%). Only the sections used for double CB$_2$/cytokeratin-ir were further processed with mouse immunodetection solution in order to prevent the nonspecific link between the mouse tissue and the monoclonal cytokeratin antibody. For the double CB$_2$/cytokeratin-ir, the sections were incubated in a normal donkey serum (NDS) mixture containing CB$_2$ rabbit polyclonal (1 : 50 in NDS) and cytokeratin monoclonal (1 : 300 in NDS) antibodies. The cytokeratin-ir was revealed through donkey anti-mouse IgGs (1 : 150 in NDS) and 0.05% DAB whereas the CB$_2$-ir was revealed through Alexa 546 donkey anti-rabbit IgGs (1 : 100 in NDS). All the sections were investigated under bright-field illumination for single cytokeratin-ir DAB immunostaining and in epifluorescence light for CB$_2$-ir immunofluorescence (Leica Microsystems Wetzlar GmbH, Wetzlar, Germany). For TRPV1-ir or PPAR-α-ir, the sections were incubated for 1 h in normal rabbit serum (NRS) and overnight at +4°C with primary goat polyclonal TRPV1 or PPAR-α antibodies (1 : 200 in NRS). Subsequently, the sections were incubated for 2 h in biotinylated rabbit anti-goat IgGs [1 : 100 in normal goat serum (NGS)]. For NAPE-PLD-ir or NAAA-ir, the sections were incubated for 1 h in NGS and overnight at +4°C with primary rabbit polyclonal NAPE-PLD or NAAA antibodies (1 : 250 in NGS). Subsequently, the sections were incubated for 2 h in biotinylated goat anti-rabbit IgGs (1 : 100 in NGS), processed with avidin–biotin–peroxidase solution and then in 0.05% DAB. Finally, all sections were washed in water, dehydrated, cleared in xylene, mounted in DPX and observed under bright-field illumination (Leica DM IRB microscope). Images were acquired using the image analysis software LEICA IM500 and the digital camera Leica DFC 320 connected to the microscope. The sections processed for immunofluorescence were studied with an epifluorescence microscope (Leica DM IRB); settings for excitation of fluorochrome 546 nm was identical throughout the analysis. Images were processed in Adobe Photoshop, with brightness and contrast being the only adjustments made. Immunohistochemical CTRL included pre-absorption of diluted antibodies with the respective immunizing peptides or omission of either the primary antisera or the secondary antibodies. These CTRL experiments did not show any staining. N = 3 mice per group were used for these experiments.
Cell culture and treatments

The immortalized HaCaT cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with glutamine (2 mM), penicillin (400 U/ml), streptomycin (50 mg/ml) and 10% foetal bovine serum in a humidified 5% CO2 atmosphere at 37°C. For sensitization, cells were plated into six-well culture plates at a cell density of 7 x 10^3 cells per well, and after 1 day were stimulated with poly-(I:C) (100 µg/ml) or vehicle (water) and incubated for 24 h at 37°C in 5% CO2. To study the effect of PEA or vehicle, poly-(I:C)-treated HaCaT cells were treated with PEA (0.1–1–10 µM) or solvent (methanol, max 0.1%) and incubated for the indicated times. To study the effect of antagonists, poly-(I:C)-treated HaCaT cells were treated with SR144528 (0.5 µM), I-RTX (0.1 µM), MK-886 (10 µM) in presence or in absence of PEA (10 µM) for the indicated time periods. SR144528 and MK-886 were dissolved in methanol, and I-RTX in dimethyl sulfoxide.

Cells plated on slide (Deckglaser, 21 x 26 mm) into six-well culture plates after 24 h were used for MCP-2 chemokine immunocytochemical analysis. Cells plated into six-well culture plates after 6 h were used for MCP-2 RT-PCR analysis, whereas supernatants were used for MCP-2 ELISA assay.

Immunocytochemical analysis of MCP-2

Human keratinocytes cells plated on slide (Deckglaser, 21 x 26 mm) into six-well culture plates after 24 h were used for MCP-2 immunocytochemical reactions in vehicle (VEH) vs poly-(I:C)-treated cells, VEH vs PEA-treated cells (0.1–1–10 µM), poly-(I:C) and PEA co-stimulated cells (0.1–1–10 µM), poly-(I:C) or PEA or poly-(I:C) + PEA vs SR144528 (0.5 µM) or I-RTX–(0.1 µM) or MK-886–(10 µM) treated cells. After removal of cell culture media and three brief and delicate rinses in phosphate buffer solution (pH = 7.4, 0.1 M), the cells attached on slides were fixed in paraformaldehyde solution (4% in PB on agitation at +4°C) then washed in PB and incubated in for 1 h in NGS and overnight with primary rabbit polyclonal MCP-2 antibody (1:300 in NGS). Subsequently, the cells were incubated for 2 h in biotinylated goat anti-rabbit IgGs (1:150 in NGS), processed with avidin–biotin–peroxidase solution and then in 0.05% DAB, washed in water, dehydrated, cleared in xylene, mounted in DPX and observed under bright-field illumination. Images were acquired using the image analysis software LEICA IM500 and the digital camera Leica DFC 320 connected to the microscope. Images were processed in Adobe Photoshop with brightness and contrast being the only adjustments made. Immunocytochemical CTRL included pre-absorption of diluted MCP-2 antibody with immunizing peptide or omission of either the primary antisera or the secondary antibody. These CTRL experiments did not show any staining.

Densitometric analysis of TRPV1, PPAR-α, NAAA, MCP-2 immunostaining

Quantitative analysis of intensity of immunostaining was performed for TRPV1, PPAR-α, NAAA-PLD and NAAA in the ear skin and for MCP-2 in HaCaT keratinocytes by using a digital camera working on grey levels (JCV FC 340FX; Leica) and a software IMAGE PRO PLUS® 6.0 for Windows, MediaCybernetics Inc. (Bethesda, MD, USA), working on logarithmic values scale of absorbance for densitometric evaluation. All densitometric measures were performed on the tissue or cells processed for immunoperoxidase reaction by an observer blind to the experimental treatment being analysed. For densitometric analyses, a sample of 100 ± 5 immunopositive cells with nuclei ( unstained or lightly stained) in the focal plane were randomly identified for each animal from n = 3 animals per group, in the case of histological samples, or for each immunological trail from n = 3 trials, in the case of cytochemical samples. The images were acquired under constant light illumination and at the same magnification. In each section, the zero value of optical density was assigned to the background, i.e. a portion of sample devoid of stained cell bodies. The average values were compared by means of analysis of variance (one-way ANOVA) followed by the Bonferroni’s test.

RT-PCR analyses

Total RNA was extracted from either tissue or cells in RNA later, analysed by a 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany) (RNA integrity number > 7.0) and retro-transcribed as previously described (44). RNA from CTRL and inflamed ears was obtained from small specimens (5 mg wet tissue weight) of ear skin coming from the experiments carried out both during a previous study (38) and in the present study. Quantitative PCR analysis was performed essentially as described by an iCycler-iQ5® (Bio-Rad Laboratories, Hercules, CA, USA) in a 25 µl reaction mixture containing 10–50 ng of cDNA Optimized primers for SYBR®-Green analysis (accession numbers: MCP-2, NM_005623; CB2, NM_009924; TRPV1, NM_001001445; PPAR-α, NM_011144.6; NAPE-PLD, AB112350; NAAA, NM_025972.4; FAAH, NM_010173) and optimum annealing temperatures were designed by allele-LD® software version 6.0 (Biosoft International, Palo Alto, CA, USA) and were synthesized (HPLC-purification grade) by Eurofins/MWG GMBH (Ebersberg, Germany). Assays were performed in quadruplicate (Δ from threshold cycle of replicate samples < 0.3) and a standard curve from consecutive fivefold dilutions (100–0.16 ng) of a cDNA pool representative of all samples was included, for PCR-efficiency determination. Relative gene expression analysis, corrected for PCR-efficiency and normalized respect to reference gene β-actin (accession: NM_001101), was performed by the iCYCLER-iQ® software (Bio-Rad Laboratories, Hercules, CA, USA) ‘Gene expression module’. Significance was evaluated according to Pfaffl et al. (45).

ELISA assay

MCP-2 levels were measured from cell supernatants derived from poly-(I:C)-treated HaCaT cells, with or without the TRPV1 antagonist, I-RTX, in presence or in absence of PEA
using the human MCP-2 ELISA kit protocol and according to the manufacturer’s instructions (Ray Biotech, Inc. provided by Tebu-Bio, Magenta, Milan, Italy).

**Endocannabinoid, PEA and oleoylethanolamide (OEA) measurement in poly-(I-C)-sensitized HaCaT cells**

Human keratinocytes were plated into six-well culture plates and sensitized with poly-(I-C). After 24 h, cells and supernatants were homogenized in chloroform/methanol/Tris–HCl 50 mM pH 7.4 (2 : 1 : 1, v/v) containing 10 pmol of [2H]8-AEA, and 50 pmol of [2H]2-AG, [2H]4-PEA and [2H]2-OEA as internal standards (41). The extraction and purification phases and the LC–APCI–MS analysis of PEA were conducted as described earlier. LC–APCI–MS analysis of AEA, 2-AG and OEA analysis were carried out using m/z values of 356 and 348 (molecular ions +1 for deuterated and undeuterated AEA), 384.35 and 379.35 (molecular ions +1 for deuterated and undeuterated 2-AG), 328 and 326 (molecular ions +1 for deuterated and undeuterated OEA). AEA, 2-AG and OEA levels were calculated by isotopic dilution, as described for earlier for PEA.

**Drugs and their administration to mice with DNFB-induced CAD**

Palmitoylethanolamide (5 and 10 mg/kg), cpz (0.5 and 2 mg/kg) and the association of PEA, 5 mg/kg, and cpz, 0.5 mg/kg, or the association of PEA, 10 mg/kg, and cpz, 2 mg/kg, were administered intraperitoneally (i.p.) on day 5, 6, 7 (the days of the first challenge with DNFB), or on day 12, 13, 14 (the days of the second challenge with DNFB) after the initial sensitization with DNFB. N = 11 mice per group were used for these experiments.

**Results**

**PEA concentrations and MCP-2 mRNA levels in the ears of DNFB-sensitized/challenged mice**

For these experiments, we employed exactly the same mouse ear extracts previously shown to contain elevated AEA and 2-AG levels following DNFB treatment and subsequent second challenge, and in which measures of ear thickness (oedema) had been already carried out (38). PEA amounts were measured by LC-MS in the ear skin of DNFB-sensitized and challenged mice. In the second series of experiments, MCP-2 mRNA was measured after the second challenge only in WT mice with or without concomitant intra-peritoneal (i.p.) administration of PEA (5 mg/kg, i.p.) (see Materials and methods). Total RNA was extracted and assayed by quantitative RT-PCR for MCP-2 and β-actin (reference gene), as described in Materials and methods.

**Table 1** MCP-2 transcriptional expression in ear skin of DNFB-sensitized and challenged mice. In the first series of experiments, MCP-2 mRNA was measured after the second challenge in both wild-type (WT) and double CB1/CB2 null (KO) mice. In the second series, MCP-2 mRNA was measured after the second challenge only in WT mice with or without concomitant intraperitoneal (i.p.) administration of PEA (5 mg/kg, i.p.) (see Materials and methods).

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean threshold cycles</th>
<th>SD</th>
<th>Normalized relative expression</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>29.72</td>
<td>0.24</td>
<td>0.018</td>
<td>0.003</td>
</tr>
<tr>
<td>WT + DNFB</td>
<td>23.26</td>
<td>0.16</td>
<td>0.89*</td>
<td>0.12</td>
</tr>
<tr>
<td>CB1/CB2 KO</td>
<td>29.30</td>
<td>0.39</td>
<td>0.023</td>
<td>0.007</td>
</tr>
<tr>
<td>CB1/CB2 KO + DNFB</td>
<td>23.40</td>
<td>0.16</td>
<td>1.00*</td>
<td>0.13</td>
</tr>
<tr>
<td>WT</td>
<td>26.57</td>
<td>0.19</td>
<td>0.014</td>
<td>0.003</td>
</tr>
<tr>
<td>WT + DNFB</td>
<td>19.21</td>
<td>0.07</td>
<td>1.00*</td>
<td>0.08</td>
</tr>
<tr>
<td>WT DNFB + PEA</td>
<td>19.98</td>
<td>0.05</td>
<td>0.60**</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Normalized relative expression, expression normalized to β-actin and relative to the expression in the sample with highest expression (1.00); SD, standard deviation; DNFB, 2,4-dinitrofluorobenzene; KO, knockout; PEA, palmitoylethanolamide.

*P < 0.005 vs corresponding WT; **P < 0.05 vs WT + DNFB.

KO/DNFB) in terms of ear thickness (38) and expression of MCP-2 mRNA (Table 1), the higher was the concentration of PEA in ear skin.

**Potential targets of PEA are up-regulated in ear keratinocytes of DNFB-sensitized/challenged mice**

To investigate whether the proposed receptors for PEA are localized in keratinocytes of the ears of DNFB-sensitized and challenged mice, we used the double immunohistochemical staining of CB2 and cytokeratin on the de-paraffinated sections of the ears of DNFB-treated mice after the second challenge, coming from a previous study (38). DAB labelling
(cytokeratin-ir) and red fluorescence (CB2-ir) revealed that the same dermal and epidermal cells are cytokeratin- and CB2-ir (Fig. 2A). Likewise, TRPV1-ir as well as PPARα-ir (Fig. 2B,C) are over-expressed in what clearly look like keratinocytes of the ears of both WT mice and particularly, double CB1/CB2 KO mice after DNFB treatment, where the optical density of ir were: 0.41 ± 0.057 vs 0.50 ± 0.064 in WT/CTRL vs WT/DNFB, and 0.52 ± 0.049 vs 0.64 ± 0.077 in CB1/CB2 KO/CTRL vs CB1/CB2 KO/DNFB for TRPV1 receptors; and 0.36 ± 0.062 vs 0.49 ± 0.055 in WT/CTRL vs WT/DNFB, and 0.34 ± 0.079 vs 0.56 ± 0.059 in CB1/CB2 KO/CTRL vs CB1/CB2 KO/DNFB for PPAR-α receptors.

Expression of PEA metabolic enzymes in the ear keratinocytes of DNFB-sensitized/challenged mice

To investigate the possible cellular source of PEA in the ear skin of DNFB-treated mice and to assess whether its increased levels are accounted for by variations in the amounts of its biosynthetic and inactivating enzymes, we determined the levels of NAPE-PLD and NAAA (Fig. 3A,B), respectively, in the ear skin of DNFB-sensitized and challenged mice after the second challenge, coming from a previous study (38). NAPE-PLD protein expression was up-regulated, whereas NAAA protein expression was slightly

---

**Figure 2** Expression of potential targets for palmitoylethanolamide in ear keratinocytes of mice treated with vehicle or sensitized and challenged with 2,4-dinitrofluorobenzene (DNFB). (A) 3,3′-diaminobenzidine (DAB) labelling for cytokeratin-immunoreactivity (ir) and red fluorescence for CB2-ir in keratinocytes of the ear skin in wild-type (WT) and DNFB-sensitized and challenged mice. The asterisks indicate the same cells double labelled with cytokeratin- and CB2-ir. Scale bar = 60 μm. (B) Immunohistochemical analysis of transient receptor potential vanilloid type-1 (TRPV1) receptors expression in the ear skin of WT and knockout (KO) mice after DNFB treatment. In the DAB labelling for TRPV1-ir, note how TRPV1-ir increases in the keratinocytes of both WT mice and particularly, double CB1/CB2 KO mice after DNFB treatment (scale bar = 150 μm). This is confirmed by the corresponding densitometric analyses of TRPV1-ir, in which optical density is expressed in the log scale, and the data are means ± SD of N = 3 separate determinations on n = 100 cells. *P < 0.05 for both WT/CTRL vs WT/DNFB and KO/CTRL vs KO/DNFB. (C) Immunohistochemical analysis of peroxisome proliferator-activated receptor-α (PPARα) receptors expression in the ear skin of WT and KO mice after DNFB treatment. In the DAB labelling for PPARα-ir, note how PPAR-α-ir increases in the keratinocytes of both WT mice and particularly, double CB1/CB2 KO mice after DNFB treatment (scale bar = 150 μm). This is confirmed by the corresponding densitometric analyses of PPARα-ir, in which optical density is expressed in the log scale, and the data are means ± SD of N = 3 separate determinations on n = 100 cells. *P < 0.05 for both WT/CTRL vs WT/DNFB and KO/CTRL vs KO/DNFB.
down-regulated, in what clearly look like keratinocytes (Fig. 3A,B) of WT mice and CB1/CB2 double KO mice, following DNFB treatment, as shown by optical density of ir: 0.41 ± 0.011 vs 0.81 ± 0.097 in WT/CTRL vs WT/DNFB, and 0.45 ± 0.056 vs 0.77 ± 0.087 in CB1/CB2 KO/CTRL vs CB1/CB2 KO/DNFB, for NAPE-PLD enzyme expression; and 0.51 ± 0.03 vs 0.45 ± 0.07 in WT/CTRL vs WT/DNFB, and 0.73 ± 0.013 vs 0.67 ± 0.05 in CB1/CB2 KO/CTRL vs CB1/CB2 KO/DNFB, for NAAA enzyme expression.

Expression of the mRNA for the targets of PEA in ears of DNFB-sensitized/challenged mice

Previous studies already showed that CB2 mRNA is up-regulated in the ears of DNFB-sensitized/challenged WT mice (38). Here, we found that, in RNA samples coming from the same study in which the paraffine sections analysed earlier were obtained (38), the levels of TRPV1 mRNA measured by q-PCR, quite surprisingly, decreased, rather than increasing, following DNFB challenge. This was observed in both WT (with threshold cycles increasing from 32.78 ± 0.12 to 33.45 ± 0.34, and normalized relative expression decreasing from 1.00 ± 0.11 to 0.43 ± 0.11) and CB1/CB2 double KO (with threshold cycles remaining unchanged from 32.88 ± 0.21 to 32.77 ± 0.22, but with normalized relative expression decreasing from 0.89 ± 0.15 to 0.56 ± 0.10) mice. Likewise, the levels of PPARα mRNA decreased, rather than increasing, following DNFB challenge in both WT (with threshold cycles increasing from 31.78 ± 0.11 to 32.83 ± 0.11, and normalized relative expression decreasing from 0.78 ± 0.08 to 0.26 ± 0.02) and CB1/CB2 double KO (with threshold cycles increasing from 31.35 ± 0.04 to 31.90 ± 0.07, and normalized relative expression decreasing from 1.00 ± 0.09 to 0.40 ± 0.04) mice. Similar results (not shown) were obtained when using RNA samples prepared
from the DNFB-treated WT mice used in this study (see below).

**Expression of PEA metabolic enzyme mRNA in ears of DNFB-sensitized/challenged mice**

Again unexpectedly, considering that we used RNA samples coming from the same study in which the paraffine sections analysed earlier were obtained (38), the levels of NAAA mRNA, measured by q-PCR, increased, rather than decreasing, after DNFB challenge in both WT (with threshold cycles decreasing from 24.27 ± 0.17 to 22.48 ± 0.12, and normalized relative expression increasing from 0.34 ± 0.05 to 0.80 ± 0.08) and CB1/CB2 double KO (with threshold cycles decreasing from 23.97 ± 0.078 to 21.85 ± 0.08, and normalized relative expression increasing from 0.39 ± 0.04 to 1.00 ± 0.10) mice. The expression of NAPE-PLD mRNA, instead, decreased, rather than increasing, after DNFB challenge in both WT (with threshold cycles increasing from 27.22 ± 0.09 to 27.43 ± 0.18, and normalized relative expression decreasing from 0.39 ± 0.04 to 1.00 ± 0.10) mice. The expression of NAPE-PLD mRNA, instead, decreased, rather than increasing, after DNFB challenge in both WT (with threshold cycles increasing from 27.22 ± 0.09 to 27.43 ± 0.18, and normalized relative expression decreasing from 1.00 ± 0.10 to 0.50 ± 0.07) mice. Similar results (not shown) were obtained when using RNA samples prepared from the DNFB-treated WT mice used in this study (see below).

PEA downregulates the formation of the chemokine MCP-2 in HaCaT

Because MCP-2 down-regulation was previously shown to underlie endocannabinoid anti-inflammatory effects in CAD, and poly-(I:C) was found to reproduce in vitro the effects of DNFB on this chemokine in vivo (38), we investigated the effect of PEA on MCP-2 chemokine expression in poly-(I:C)-treated HaCaT keratinocytes. Cells treated for 24 h with poly-(I:C) produced significantly higher levels of the MCP-2 chemokine when compared to vehicle-treated HaCaT cells, in which the signal was almost undetectable (Fig. 4A). When HaCaT cells were incubated with PEA at different concentrations (0.1–1–10 μM), no effect was observed on MCP-2 chemokine expression (Fig. 4A,B), whereas, when HaCaT cells were co-stimulated with poly-(I:C) and PEA (10 μM), we observed a strong reduction of MCP-2 protein levels (Fig. 4A,B, \( P < 0.001 \)) when compared to poly-(I:C)-treated HaCaT cells incubated with vehicle. In fact, the optical density of MCP-2-ir was 0.82 ± 0.09, 0.79 ± 0.07, 0.76 ± 0.04, 0.32 ± 0.03 vs 0.28 ± 0.02, 0.25 ± 0.01, 0.30 ± 0.03, 0.27 ± 0.02 respectively in VEH + POLY, POLY + PEA 0.1 μM, POLY + PEA 1.0 μM, POLY + PEA 10 μM vs VEH + VEH, VEH + PEA 0.1 μM, VEH + PEA 1.0 μM, VEH + PEA 10 μM.

We next investigated the effect of a CB2 receptor antagonist (SR144528, 0.5 μM), or a TRPV1 receptor antagonist (I-RTX, 0.1 μM), or a PPAR-α receptor antagonist (MK-886, 10 μM) on MCP-2 protein levels in poly-(I:C)-sensitized HaCaT cells, in the presence or absence of PEA (10 μM). Our results show that when HaCaT cells were stimulated with the antagonists alone, no effect was observed on MCP-2 protein levels when compared to vehicle-treated HaCaT cells (Fig. 4C,D). When HaCaT cells were co-stimulated with poly-(I:C) and the antagonists alone, MCP-2 protein levels were comparable to those in the absence of the antagonists (Fig. 4C,D). In fact, the optical density of ir were 0.83 ± 0.082 vs 0.76 ± 0.099 in POLY vs POLY/SR144528-treated cells, 0.70 ± 0.075 vs 0.83 ± 0.089 in POLY vs POLY/I-RTX-treated cells, and 0.70 ± 0.075 vs 0.76 ± 0.089 in POLY- vs POLY/MK-886-treated cells. More importantly, when HaCaT cells were co-stimulated with poly-(I:C), PEA 10 μM and I-RTX, MCP-2 protein levels was comparable to those in the absence of both PEA and I-RTX (Fig. 4C,D). In fact the optical density of ir were 0.70 ± 0.075 vs 0.74 ± 0.065 in POLY- vs POLY/PEA/I-RTX-treated cells. Finally, after the co-stimulation of HaCaT cells with poly-(I:C), PEA and either SR144528 or MK-886, the extent of MCP-2 ir was comparable to that observed in the absence of SR144528 or MK-886 (Fig. 4C,D). In fact, the optical density of ir were 0.25 ± 0.013 vs 0.22 ± 0.013 in POLY/PEA- vs POLY/PEA/SR144528-treated cells, and 0.22 ± 0.015 vs 0.19 ± 0.021 in POLY/PEA- vs POLY/PEA/MK-886-treated cells.

**Quantitative RT-PCR analysis of MCP-2 mRNA in HaCaT cells**

MCP-2 transcriptional expression in HaCaT cells treated with poly-(I:C) at different incubation times showed a relative maximum at 6 h and a decrease to basal level at 24 h from treatment (data not shown). Table 2 shows that PEA (10 μM) inhibited the expression of MCP-2 mRNA in HaCaT cells treated with poly-(I:C) for 6 h, and that this effect was counteracted by I-RTX (0.1 μM).

**ELISA assay**

As shown in Fig. 4E, PEA (10 μM) inhibited the release of MCP-2 into the medium of HaCaT cells treated with poly-(I:C) for 6 h. The effect was counteracted by I-RTX (0.1 μM).

**AEA, PEA and OEA content in poly-(I:C)-sensitized HaCaT cells**

In order to investigate the possibility of an ‘entourage’ effect at TRPV1 receptors as a molecular mechanism for PEA action, we determined the levels of AEA, 2-AG, PEA and the other endovanilloid and endogenous PPAR-α ligand, OEA in poly-(I:C)-treated HaCaT cells. Our results, shown in Fig. 5, indicate that AEA levels are elevated in poly-(I:C)-treated HaCaT cells (0.39 ± 0.13 pmol/mg of lipid extract) when compared to vehicle-treated HaCaT cells (0.08 ± 0.02 pmol/mg of lipid extract). PEA and OEA levels were even more strongly elevated in poly-(I:C)-treated HaCaT cells (10.18 ± 1.06 pmol/mg and 29.77 ± 1.61 pmol/mg of lipid extract) when compared to vehicle-treated HaCaT cells.
**Figure 4** MCP-2 chemokine expression in polyinosinic polycytidylic acid [poly-(I:C)]-stimulated human keratinocytes (HaCaT) cells. (A) 3,3′-diaminobenzidine (DAB) labelling for MCP2-immunoreactivity in the presence or in the absence of palmitoylethanolamide (PEA) at different concentrations (0.1–1–10 µM) in cells stimulated for 24 h with poly-(I:C) (100 µg/ml, POLY). Scale bar = 100 µm. (B) Histograms of the densitometric analyses of experiments such as those depicted in (A). Data are means ± SD of N = 3 separate determinations on n = 100 cells. ***P < 0.001 for VEH + POLY or POLY + PEA 0.1 µM vs POLY + PEA 10.0 µM. (C) DAB labelling for MCP-2-ir in the presence of the antagonists MK-886 (10 µM), iodio-resiniferatoxin (IRTX, 0.1 µM) and SR144528 (SR2, 0.5 µM), in the presence or in the absence of PEA (10 µM), in cells stimulated for 24 h with poly-(I:C) (100 µg/ml, POLY). Scale bar = 100 µm. (D) Histograms of the densitometric analyses of experiments such as those depicted in (C). Upper panel: P < 0.001 for MK886 vs POLY + VEH or POLY + MK886; P < 0.01 for POLY + VEH vs POLY + PEA 10.0 µM or POLY + PEA 10.0 µM + MK886; P < 0.01 for POLY + MK886 vs POLY + PEA 10.0 µM or POLY + PEA 10.0 µM + MK886. Middle panel: P < 0.001 for IRTX vs POLY + VEH or POLY + IRTX; P < 0.01 for POLY + VEH vs POLY + PEA 10.0 µM or POLY + PEA 10.0 µM + IRTX; P < 0.01 for POLY + IRTX vs POLY + PEA 10.0 µM + IRTX. Lower panel: P < 0.001 for SR2 vs POLY + VEH or POLY + SR2; P < 0.01 for POLY + VEH vs POLY + PEA 10.0 µM or POLY + PEA 10.0 µM + SR2; P < 0.01 for POLY + SR2 vs POLY + PEA 10.0 µM or POLY + PEA 10.0 µM + SR2. Data in (B,D) are means ± SD of N = 3 separate determinations on n = 100 cells. (E) ELISA assay for MCP-2 in the supernatants of poly-(I:C)-(100 µg/ml, POLY)-stimulated HaCaT cells (6-h incubation). Data are means ± SE of N = 3 separate determinations. ***P < 0.001 control vs POLY and POLY vs POLY + PEA 10 µM and POLY + PEA 10 µM vs POLY + PEA 10 µM + IRTX.
Table 2  MCP-2 transcriptional expression in human keratinocytes (HaCaT) cells treated for 6 h with polynosinic polycytidylic acid (100 μg/ml, POLY), PEA (10 μM) and I-RTX (0.1 μM). HaCaT cells were cultured in presence of POLY, PEA and I-RTX, as described in Materials and methods. Total RNA was extracted and assayed by quantitative RT-PCR for MCP-2 and β-actin (reference gene) targets, as described in Materials and methods.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Gene</th>
<th>Mean threshold cycles</th>
<th>SD</th>
<th>Relative quantity</th>
<th>SD</th>
<th>Normalized relative expression</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>β-Actin</td>
<td>19.39</td>
<td>0.19131</td>
<td>1.00000</td>
<td>0.13260</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>MCP-2</td>
<td>24.57</td>
<td>0.22326</td>
<td>1.00000</td>
<td>0.15475</td>
<td>1.00000</td>
<td>0.20379</td>
</tr>
<tr>
<td>POLY</td>
<td>β-Actin</td>
<td>25.53</td>
<td>0.19867</td>
<td>0.85606</td>
<td>0.15505</td>
<td>59.88177*</td>
<td>13.68563</td>
</tr>
<tr>
<td></td>
<td>MCP-2</td>
<td>24.81</td>
<td>0.26314</td>
<td>0.85394</td>
<td>0.03084</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PEA</td>
<td>β-Actin</td>
<td>19.62</td>
<td>0.06211</td>
<td>0.41273</td>
<td>0.23094</td>
<td>0.48332</td>
<td>0.27100</td>
</tr>
<tr>
<td></td>
<td>MCP-2</td>
<td>25.85</td>
<td>0.80724</td>
<td>0.77120</td>
<td>0.07784</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>POLY+PEA</td>
<td>β-Actin</td>
<td>19.76</td>
<td>0.14561</td>
<td>0.41924</td>
<td>0.16582</td>
<td>0.54361</td>
<td>0.22190</td>
</tr>
<tr>
<td>IRTX</td>
<td>β-Actin</td>
<td>19.31</td>
<td>0.03000</td>
<td>1.06538</td>
<td>0.02195</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>MCP-2</td>
<td>25.19</td>
<td>0.88306</td>
<td>0.65196</td>
<td>0.39906</td>
<td>0.61775</td>
<td>0.37834</td>
</tr>
<tr>
<td>POLY+PEA+IRTX</td>
<td>β-Actin</td>
<td>24.09</td>
<td>0.13715</td>
<td>0.03838</td>
<td>0.00365</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>MCP-2</td>
<td>25.77</td>
<td>0.47254</td>
<td>0.43593</td>
<td>0.14278</td>
<td>11.35825*</td>
<td>3.87381</td>
</tr>
</tbody>
</table>

Relative quantity, relative quantity vs the sample in which the gene was most highly expressed; normalized relative expression, normalized expression with respect to β-actin; SD, standard deviation; I-RTX, iodio-resiniferatoxin; PEA, palmitoylethanolamide.

*P < 0.005 vs control (CTRL); **P < 0.05 vs POLY.

(1.92 ± 0.12 and 5.56 ± 0.57 pmol/mg of lipid extract). By contrast, the levels of the endocannabinoid 2-AG, which has no activity at TRPV1 receptors, were significantly reduced in poly-(I:C)-treated HaCaT cells.

Effect of PEA in mice with DNFB-induced CAD

The i.p. administration of PEA at the doses of 5 and 10 mg/kg on day 5, 6 and 7 significantly reduced, although not in a dose-dependent way, the ear thickness measured 24, 48 and 72 h after the first challenge when compared to CTRL mice (Fig. 6A). On the contrary, only PEA at the highest dose (10 mg/kg) administered on day 12, 13 and 14 reduced ear thickness measured 24, 48 and 72 h after the second challenge, whereas in this case the 5 mg/kg dose did not show any effect (Fig. 6A). The co-administration of per se inactive doses of cpz (0.5–2 mg/kg) with PEA (5–10 mg/kg) was able to reverse PEA effect on ear thickness exclusively only after the first challenge (Fig. 6A). In agreement with previous data (38), the first challenge with DNFB also caused a strong increase in MCP-2 mRNA expression in inflamed ears (Table 1). This effect was significantly counteracted by co-treatment with 5 mg/kg PEA on day 5, 6 and 7 (Table 1).

Discussion

In this study, we demonstrated for the first time, a protective role of PEA against inflammation in an experimental model of CAD in vivo, and in keratinocytes in vitro, and investigated the molecular mechanism for the actions of PEA in vitro.

First, we showed that strongly elevated levels of PEA are found particularly in the ear skin of the same DNFB-treated CB6/CB6 double KO mice previously reported to display a dramatically stronger inflammatory response to DNFB (38). Therefore, the extent to which PEA levels are increased after challenge with DNFB appears to correspond to the extent of the inflammatory response. The increased endogenous levels of PEA were accompanied, specifically in ear skin keratinocytes, by the up-regulation of NAPE-PLD, the enzyme responsible of the biosynthesis of this mediator, and by the slight down-regulation of NAAA, one of the enzymes catalyzing PEA inactivation. These changes in the protein levels of these enzymes suggest that the metabolic machinery regulating PEA concentration is modified during DNFB-induced CAD in order to increase the concentration of this compound selectively in keratinocytes. Indeed, when we quantified, in whole ear tissue, the mRNA levels of NAPE-PLD and NAAA by q-PCR, we found that, opposite to what observed in keratinocytes using immunostaining, the two enzymes were respectively down- and up-regulated following DNFB-induced inflammation. Assuming, bona fide, the specificity of the antibodies used here for the immunohistochemical experiments, this finding can be interpreted by hypothesizing that, in other cell types participating in DNFB-induced CAD, such as mast cells, macrophages and CD8+ T cells, that may have not been detectable in the slices used for immunostaining experiments (which normally contain much less tissue than that used for q-PCR determination), the enzymatic machinery controlling PEA levels is regulated in a way opposite to that observed in keratinocytes. This, in turn, might lead to a localized decrease of PEA levels in mast cells, macrophages and/or CD8+ T cells that would not be sufficient to cause a global decrease of PEA in the inflamed ears, but, given the anti-inflammatory effects of PEA (32, 46), might still contribute to the activation of these immune cells and/or their migration towards the site of inflammation. This hypothesis should be evaluated, for example, by isolating CD8+ T cells infiltrating the skin following DNFB...
challenge (as well as the draining lymph node responsible for their release), and measuring their PEA content and the effect of PEA on their proliferation and priming. Such experiments, whilst being outside the scope of the present study, which was aimed at investigating the regulation and role of PEA in keratinocytes, should be undertaken in the future.

The up-regulation of PEA levels observed here after DNFB treatment is reminiscent of that previously reported by us for the levels of the two endocannabinoids, AEA and 2-AG, in the same animal model (38). In fact, these two compounds are also elevated in the ear skin of DNFB-treated WT and, particularly, CB1/CB2 double KO mice, and were suggested to exert a protective role against CAD by acting on keratinocytes via CB1 and CB2 receptors (38). Therefore, our next experiments were aimed at investigating if also PEA plays a similar protective function in keratinocytes. First, we observed that TRPV1 and PPAR-α receptors, which are known to be over-expressed in human and murine epidermal keratinocytes under certain inflammatory conditions (47, 48), are over-expressed also in the keratinocytes of the ears of DNFB-sensitized and challenged mice. We also confirmed the previous finding that a similar up-regulation occurs also for CB2 receptors (38), which, as well as TRPV1 and PPAR-α, is another proposed direct or indirect target for PEA. The up-regulation of TRPV1 and PPAR-α is likely specific for keratinocytes, because q-PCR analysis of the mRNAs encoding the two proteins revealed that, instead, they are down-regulated in the ear tissue of DNFB-treated mice. These data suggest that PEA, produced by keratinocytes during DNFB-induced CAD, might act at either CB2, TRPV1 or PPAR-α receptors mostly on these cells, in an autocrine way. To investigate what type of role PEA might play in keratinocytes, and through what receptor, we used cultures of HaCaT keratinocytes, which express cannabinoid, PPAR-α and TRPV1 receptors, as well as the enzymatic apparatus necessary for PEA biosynthesis and degradation (49–51; P. Orlando and V. Di Marzo, unpublished data). Importantly, when stimulated with poly-(I:C) (an agonist of the toll-like receptor 3), HaCaT cells produce MCP-2 (38). This chemokine (1) is involved in the recruitment of macrophages and mast cells into inflammatory sites, and in the activation of T-lymphocytes (52, 53) and (2) even more relevant to the present study, is the same pro-inflammatory mediator the down-regulation of which underlies the anti-inflammatory effects of CB1/CB2 agonists in ear keratinocytes of mice with DNFB-induced CAD, as well as in poly-(I:C)-treated HaCaT cells in vitro (38). Therefore, we assessed whether also PEA inhibits MCP-2 expression in HaCaT keratinocytes. Indeed, PEA did reduce (1) MCP-2 protein levels in HaCaT cells stimulated for 24 h with poly-(I:C); and (2) MCP-2 mRNA levels and MCP-2 protein release after a 6-h stimulation with poly-(I:C). In order to investigate whether this protective action was receptor mediated, we studied the effect of antagonists of the proposed PEA targets. We found that only a selective antagonist of TRPV1 receptors, I-RTX, was able to reverse the inhibitory effect of PEA on MCP-2 expression, whereas this effect was not influenced by either CB2 or PPAR-α receptors antagonists. These data indicate that PEA, like the endocannabinoids (38), but through a different molecular mechanism, is able to counteract MCP-2 production and release by cultured HaCaT cells.

Given the lack of activity per se of PEA at TRPV1 receptors, our in vitro pharmacological experiments suggest that this mediator might exert its autocrine protective action in keratinocytes by an ‘entourage’ effect on endogenous ligands of TRPV1 receptors, such as AEA and OEA (54), as previously hypothesized also for other effects of PEA both in vitro.
and in vivo (27, 28). Therefore, we determined whether HaCaT cells do produce AEA and OEA. We show that the levels of AEA, OEA and PEA are significantly elevated after 24-h stimulation of HaCaT cells with poly-(I-C), whereas a decrease was instead observed for the levels of 2-AG, which does not activate TRPV1 receptors. These data support our hypothesis that PEA might act on poly-(I-C)-treated keratinocytes via an ‘entourage’ effect on AEA- and OEA-mediated TRPV1 receptor activation/desensitization. They are in agreement with (1) the previously reported capability of PEA to potentiate endovanilloid activation of TRPV1 receptors (25, 26, 55, 56); (2) the proposed pro-inflammatory role of TRPV1 in keratinocytes (50, 57) and (3) the anti-inflammatory actions of TRPV1 agonists/desensitizers and antagonists (58).

Finally, we wanted to gain evidence that the anti-inflammatory effect of PEA occurs also in vivo in the same model of CAD in which the compound is up-regulated. We found that PEA reduced the DNFB-induced ear skin oedema, which was shown previously to be partly mediated by MCP-2 (38). Accordingly, we also found that PEA reduces significantly DNFB-induced elevation of MCP-2 mRNA levels in ear skin. Importantly, the anti-inflammatory effect of PEA on the first, but not on the second, challenge was counteracted by per se inactive doses of the TRPV1 antagonist, capsazepine. This indicates that the mechanism of PEA anti-inflammatory effect observed in vitro in keratinocytes might apply also to DNFB-sensitized mice, at least for what the first challenge is concerned. However, although keratinocytes play an important role in all phases of CAD, especially in the early initiation phase, it is also well known that the inflammatory response that follows subsequent challenges involves different cell types, such as T-lymphocytes and mast cells. Therefore, further studies will be needed to investigate the molecular target(s) and cell types involved in the protective actions of PEA in this animal model of CAD, particularly as we provided here no evidence that the anti-oedema and MCP-2-down-regulatory effects of this compound in vivo are because of interaction with keratinocytes and not, for example, CD8+ T cells or mast cells.

In conclusion, we have presented data suggesting that (1) ear skin keratinocytes are possibly the major cellular source of the strongly elevated PEA tissue levels detected in the ears of DNFB-sensitized/challenged mice, an animal model of CAD; (2) PEA levels are also elevated, together with the levels of the related endocannabinoid/endovanilloids, AEA and OEA, in cultured HaCaT following the treatment with poly-(I-C) and (3) PEA down-regulates the expression and levels of the inflammatory cytokine MCP-2 in poly-(I-C)-treated HaCaT in vitro in a way antagonized by a selective TRPV1 antagonist, and exerts an anti-inflammatory action in DNFB-sensitized/challenged mice, again partly via TRPV1 receptors. Future studies will have to investigate what additional molecular and cellular targets of PEA are involved in its anti-inflammatory actions in this and other animal models of CAD. Our findings might open the way to the future testing of PEA in human CAD.

Conflict of interest

The authors state no conflict of interest.

Acknowledgments

This work was partly supported by Epitech Group S.r.l. The authors are grateful to Dr Katarzyna Starowicz and Marco Allarà for technical assistance.

References
